An effective matrix compression method for GPU-accelerated thermal analysis

L. Chiou, L. Lu, Chieh-Yu Lin
{"title":"An effective matrix compression method for GPU-accelerated thermal analysis","authors":"L. Chiou, L. Lu, Chieh-Yu Lin","doi":"10.1109/VLSI-DAT.2015.7114505","DOIUrl":null,"url":null,"abstract":"Three-dimensional integrated circuits are expected to face increasingly severe thermal challenges and cost issues as the number of stacked ICs increases. Thermal analysis for 3D ICs is urgently required to assist system designers at the early phase of design to identify hot zones. Most thermal analyses obtain detailed temperature distribution by large matrix operations, and hence reduce analysis performance. Accordingly, we propose a compressed and combined sparse row (CCSR) matrix format to be used in the proposed effective matrix compression (EMC) method for matrix multiplication on GPU. The experimental results show EMC using CCSR is on average 44.93 times faster than matrix multiplication without any special compression format and on average at least 3.09 times faster than other compression formats.","PeriodicalId":369130,"journal":{"name":"VLSI Design, Automation and Test(VLSI-DAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI Design, Automation and Test(VLSI-DAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-DAT.2015.7114505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional integrated circuits are expected to face increasingly severe thermal challenges and cost issues as the number of stacked ICs increases. Thermal analysis for 3D ICs is urgently required to assist system designers at the early phase of design to identify hot zones. Most thermal analyses obtain detailed temperature distribution by large matrix operations, and hence reduce analysis performance. Accordingly, we propose a compressed and combined sparse row (CCSR) matrix format to be used in the proposed effective matrix compression (EMC) method for matrix multiplication on GPU. The experimental results show EMC using CCSR is on average 44.93 times faster than matrix multiplication without any special compression format and on average at least 3.09 times faster than other compression formats.
一种用于gpu加速热分析的有效矩阵压缩方法
随着堆叠集成电路数量的增加,三维集成电路预计将面临日益严峻的热挑战和成本问题。迫切需要对3D集成电路进行热分析,以帮助系统设计师在设计的早期阶段识别热区。大多数热分析通过大矩阵运算获得详细的温度分布,从而降低了分析性能。在此基础上,提出了一种压缩组合稀疏行(CCSR)矩阵格式,用于GPU上矩阵乘法的有效矩阵压缩(EMC)方法。实验结果表明,采用CCSR的电磁兼容比没有特殊压缩格式的矩阵乘法平均快44.93倍,比其他压缩格式平均快3.09倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信