Improving Reliability of Quantum True Random Number Generator using Machine Learning

Abdullah Ash-Saki, M. Alam, Swaroop Ghosh
{"title":"Improving Reliability of Quantum True Random Number Generator using Machine Learning","authors":"Abdullah Ash-Saki, M. Alam, Swaroop Ghosh","doi":"10.1109/ISQED48828.2020.9137054","DOIUrl":null,"url":null,"abstract":"Quantum computer (QC) can be used as a true random number generator (TRNG). However, various noise sources introduce a bias in the generated number which affects the randomness. In this work, we analyze the impact of noise sources e.g., gate error, decoherence, and readout error in QC-based TRNG by running a set of error calibration and quantum tomography experiments. We employ a hybrid quantum-classical gate parameter optimization routine to find an optimal gate parameter. The optimal parameter compensates for error-induced bias and improves the quality of the random number by exploiting even the worst quality qubits. However, searching the optimal parameter in a hybrid setup requires time-consuming iterations between classical and quantum machines. We propose a machine learning model to predict optimal quantum gate parameters based on the qubit error specifications. We validate our approach using experimental results from IBM's publicly accessible quantum computers and the NIST statistical test suite. The proposed method can correct bias in any worst-case qubit by up to 88.57% in real quantum hardware.","PeriodicalId":225828,"journal":{"name":"2020 21st International Symposium on Quality Electronic Design (ISQED)","volume":"285 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED48828.2020.9137054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Quantum computer (QC) can be used as a true random number generator (TRNG). However, various noise sources introduce a bias in the generated number which affects the randomness. In this work, we analyze the impact of noise sources e.g., gate error, decoherence, and readout error in QC-based TRNG by running a set of error calibration and quantum tomography experiments. We employ a hybrid quantum-classical gate parameter optimization routine to find an optimal gate parameter. The optimal parameter compensates for error-induced bias and improves the quality of the random number by exploiting even the worst quality qubits. However, searching the optimal parameter in a hybrid setup requires time-consuming iterations between classical and quantum machines. We propose a machine learning model to predict optimal quantum gate parameters based on the qubit error specifications. We validate our approach using experimental results from IBM's publicly accessible quantum computers and the NIST statistical test suite. The proposed method can correct bias in any worst-case qubit by up to 88.57% in real quantum hardware.
利用机器学习提高量子真随机数生成器的可靠性
量子计算机(QC)可以用作真随机数生成器(TRNG)。然而,各种噪声源会在生成的数字中引入偏差,从而影响随机性。在这项工作中,我们通过运行一组误差校准和量子层析成像实验,分析了噪声源(如门误差、退相干和读出误差)对基于qc的TRNG的影响。我们采用混合量子经典门参数优化程序来寻找最优的门参数。最优参数补偿了误差引起的偏差,并通过利用最差质量的量子比特来提高随机数的质量。然而,在混合设置中搜索最优参数需要在经典机器和量子机器之间进行耗时的迭代。我们提出了一种基于量子比特误差规范的机器学习模型来预测最佳量子门参数。我们使用IBM公开访问的量子计算机和NIST统计测试套件的实验结果验证了我们的方法。在实际量子硬件中,该方法对最坏情况下任意量子位元的偏置校正率高达88.57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信