Adaptive parameter space sampling in matrix interpolatory pMOR

M. A. Bazaz, S. A. Nahve, M. Nabi, S. Janardhanan, M. Rehman
{"title":"Adaptive parameter space sampling in matrix interpolatory pMOR","authors":"M. A. Bazaz, S. A. Nahve, M. Nabi, S. Janardhanan, M. Rehman","doi":"10.1109/RDCAPE.2015.7281374","DOIUrl":null,"url":null,"abstract":"Standard order reduction techniques are not robust to parameter variations and as such a new reduced model needs to be generated each time a parameter is varied in the system under study. The problem is further compounded in large systems with analytically inexpressible parametric dependencies wherein the large scale itself may need to be generated repetitively making design cycles almost unachievable in real time. For such systems, Matrix Interpolatory parametric reduction framework is used in which the reduced model corresponding to a specific parameter value is obtained by interpolating the matrices of reduced models obtained via direct reduction at suitable points in the parametric space. However, one of the main issues in this approach is the efficient sampling of the parametric space. In this work, this issue is taken up and a measure based on subspace angles is proposed for efficient and adaptive sampling of the parameter space. Numerical results are shown for a benchmark model.","PeriodicalId":403256,"journal":{"name":"2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RDCAPE.2015.7281374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Standard order reduction techniques are not robust to parameter variations and as such a new reduced model needs to be generated each time a parameter is varied in the system under study. The problem is further compounded in large systems with analytically inexpressible parametric dependencies wherein the large scale itself may need to be generated repetitively making design cycles almost unachievable in real time. For such systems, Matrix Interpolatory parametric reduction framework is used in which the reduced model corresponding to a specific parameter value is obtained by interpolating the matrices of reduced models obtained via direct reduction at suitable points in the parametric space. However, one of the main issues in this approach is the efficient sampling of the parametric space. In this work, this issue is taken up and a measure based on subspace angles is proposed for efficient and adaptive sampling of the parameter space. Numerical results are shown for a benchmark model.
矩阵插值pMOR的自适应参数空间采样
标准降阶技术对参数变化的鲁棒性不强,因此每次系统参数发生变化时都需要生成新的降阶模型。在具有分析上无法表达的参数依赖性的大型系统中,问题进一步复杂化,其中大型系统本身可能需要重复生成,使得设计周期几乎无法实时实现。对于这类系统,采用矩阵插值参数约简框架,将直接约简得到的约简模型的矩阵在参数空间的合适点上进行插值,得到特定参数值对应的约简模型。然而,该方法的一个主要问题是参数空间的有效采样。本文针对这一问题,提出了一种基于子空间角度的参数空间有效自适应采样方法。给出了一个基准模型的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信