Unsupervised music segmentation via multi-scale processing of compressive features' representation

Ilias Theodorakopoulos, G. Economou, S. Fotopoulos
{"title":"Unsupervised music segmentation via multi-scale processing of compressive features' representation","authors":"Ilias Theodorakopoulos, G. Economou, S. Fotopoulos","doi":"10.1109/ICDSP.2013.6622772","DOIUrl":null,"url":null,"abstract":"We present an automated method for unsupervised detection of structural boundaries in musical recordings. The proposed method utilizes a compressed representation of features capturing timbre and chroma, in an 1-D time series derived via PCA. Time delay embedding and multi-scale comparison using the Wald-Wolfowitz statistical test are incorporated in order to calculate a Self Dissimilarity Matrix. A novelty curve is estimated by convolving an appropriate kernel along the main diagonal of the matrix, while the structural boundaries are located on the local maxima of the derived curve. We evaluate the proposed method on a popular dataset, using two different ground truth annotations. We demonstrate that the 1-D compressed representation of features contains enough information in order to detect boundaries with high precision, outperforming several methods from the literature.","PeriodicalId":180360,"journal":{"name":"2013 18th International Conference on Digital Signal Processing (DSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2013.6622772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present an automated method for unsupervised detection of structural boundaries in musical recordings. The proposed method utilizes a compressed representation of features capturing timbre and chroma, in an 1-D time series derived via PCA. Time delay embedding and multi-scale comparison using the Wald-Wolfowitz statistical test are incorporated in order to calculate a Self Dissimilarity Matrix. A novelty curve is estimated by convolving an appropriate kernel along the main diagonal of the matrix, while the structural boundaries are located on the local maxima of the derived curve. We evaluate the proposed method on a popular dataset, using two different ground truth annotations. We demonstrate that the 1-D compressed representation of features contains enough information in order to detect boundaries with high precision, outperforming several methods from the literature.
基于多尺度压缩特征表示的无监督音乐分割
我们提出了一种自动方法,用于无监督检测音乐录音中的结构边界。该方法利用通过PCA导出的一维时间序列中捕获音色和色度的压缩特征表示。采用时间延迟嵌入和使用Wald-Wolfowitz统计检验的多尺度比较来计算自不相似矩阵。通过沿矩阵的主对角线卷积适当的核来估计新颖性曲线,而结构边界位于导出曲线的局部最大值上。我们在一个流行的数据集上使用两种不同的基础真值注释来评估所提出的方法。我们证明了特征的一维压缩表示包含足够的信息,以便高精度地检测边界,优于文献中的几种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信