{"title":"QoE Estimation for the Wi-Fi Edge with Gradient Boosting-based Machine Learning","authors":"Berke Argın, Mehmet Ozgun Demir, Aysun Gurur Önalan, Elif Dilek Salik, Ece Gelal Soyak","doi":"10.1109/BalkanCom58402.2023.10167908","DOIUrl":null,"url":null,"abstract":"An integral part of the Intent-Based Networking paradigm is estimating and improving the end-user quality of experience (QoE). Estimating user experience from the (wide-area) network data alone does not accurately represent the performance at customer premises since Wi-Fi at the edge also significantly affects the perceived QoE. We propose machine learning-based estimation of the end-users’ perceived QoE for web browsing and video streaming applications, based on Wi-Fi statistics. We implement support vector machine (SVM), decision tree (DT), multilayer perceptron (MLP), XGBoost, and CatBoost algorithms and compare their performance. To the best of our knowledge, our CatBoost-based model yields the highest accuracy to date, 0.92 R2, in estimating the QoE for web browsing based on Wi-Fi statistics. Our experiments also show that the XGBoost-based QoE estimator outperformed the neural network-based model in estimating the QoE for video streaming. Our work demonstrates that network operators can infer the user-perceived QoE in a Wi-Fi network through telemetry data obtained by passive measurements.","PeriodicalId":363999,"journal":{"name":"2023 International Balkan Conference on Communications and Networking (BalkanCom)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Balkan Conference on Communications and Networking (BalkanCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BalkanCom58402.2023.10167908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An integral part of the Intent-Based Networking paradigm is estimating and improving the end-user quality of experience (QoE). Estimating user experience from the (wide-area) network data alone does not accurately represent the performance at customer premises since Wi-Fi at the edge also significantly affects the perceived QoE. We propose machine learning-based estimation of the end-users’ perceived QoE for web browsing and video streaming applications, based on Wi-Fi statistics. We implement support vector machine (SVM), decision tree (DT), multilayer perceptron (MLP), XGBoost, and CatBoost algorithms and compare their performance. To the best of our knowledge, our CatBoost-based model yields the highest accuracy to date, 0.92 R2, in estimating the QoE for web browsing based on Wi-Fi statistics. Our experiments also show that the XGBoost-based QoE estimator outperformed the neural network-based model in estimating the QoE for video streaming. Our work demonstrates that network operators can infer the user-perceived QoE in a Wi-Fi network through telemetry data obtained by passive measurements.