New techniques for accelerating fault injection in VHDL descriptions

B. Parrotta, M. Rebaudengo, M. Reorda, M. Violante
{"title":"New techniques for accelerating fault injection in VHDL descriptions","authors":"B. Parrotta, M. Rebaudengo, M. Reorda, M. Violante","doi":"10.1109/OLT.2000.856613","DOIUrl":null,"url":null,"abstract":"Simulation-based fault injection in VHDL descriptions is increasingly common due to the popularity of top-down design flows exploiting this language. However, the large CPU time required to perform VHDL simulations often represents a major drawback stemming from the adoption of this method. This paper presents some techniques for reducing the time to perform the fault injection experiments. Static and dynamic methods are proposed to analyze the list of faults to be injected, and for removing faults as soon as their behaviour is known. Common features available in most VHDL simulation environments are also exploited. Experimental results show that the proposed techniques are able to reduce the time required by a typical fault injection campaign by a factor ranging from 51% to 96%.","PeriodicalId":334770,"journal":{"name":"Proceedings 6th IEEE International On-Line Testing Workshop (Cat. No.PR00646)","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 6th IEEE International On-Line Testing Workshop (Cat. No.PR00646)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OLT.2000.856613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

Simulation-based fault injection in VHDL descriptions is increasingly common due to the popularity of top-down design flows exploiting this language. However, the large CPU time required to perform VHDL simulations often represents a major drawback stemming from the adoption of this method. This paper presents some techniques for reducing the time to perform the fault injection experiments. Static and dynamic methods are proposed to analyze the list of faults to be injected, and for removing faults as soon as their behaviour is known. Common features available in most VHDL simulation environments are also exploited. Experimental results show that the proposed techniques are able to reduce the time required by a typical fault injection campaign by a factor ranging from 51% to 96%.
加速VHDL描述中故障注入的新技术
由于利用VHDL语言的自顶向下设计流的流行,在VHDL描述中基于仿真的故障注入越来越普遍。然而,执行VHDL模拟所需的大量CPU时间通常是采用这种方法的一个主要缺点。本文介绍了一些减少故障注入实验时间的技术。提出了静态和动态方法来分析要注入的故障列表,并在故障行为已知时立即排除故障。还利用了大多数VHDL仿真环境中可用的公共特性。实验结果表明,所提出的技术能够将典型断层注入活动所需的时间减少51%至96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信