Automatic cell phone recognition from speech recordings

Ling Zou, Ji-Chen Yang, Tangsen Huang
{"title":"Automatic cell phone recognition from speech recordings","authors":"Ling Zou, Ji-Chen Yang, Tangsen Huang","doi":"10.1109/ChinaSIP.2014.6889318","DOIUrl":null,"url":null,"abstract":"Recording device recognition is an important research field of digital audio forensic. In this paper, we utilize Gaussian mixture model-universal background model (GMM-UBM) as the classifier to form a recording device recognition system. We examine the performance of Mel-frequency cepstral coefficients (MFCCs) and Power-normalized cepstral coefficients (PNCCs) to this problem. Experiments conducted on recordings come from 14 cell phones show that MFCCs are more effective than PNCCs in cell phone recognition. We find that the identification performance can be improved by stacking MFCCs and energy feature. We also investigate the effect of speaker mismatch and de-noising processing for acoustic feature to this problem. The highest identification accuracy achieved here is 97.71%.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Recording device recognition is an important research field of digital audio forensic. In this paper, we utilize Gaussian mixture model-universal background model (GMM-UBM) as the classifier to form a recording device recognition system. We examine the performance of Mel-frequency cepstral coefficients (MFCCs) and Power-normalized cepstral coefficients (PNCCs) to this problem. Experiments conducted on recordings come from 14 cell phones show that MFCCs are more effective than PNCCs in cell phone recognition. We find that the identification performance can be improved by stacking MFCCs and energy feature. We also investigate the effect of speaker mismatch and de-noising processing for acoustic feature to this problem. The highest identification accuracy achieved here is 97.71%.
从语音记录自动识别手机
录音设备识别是数字音频取证的一个重要研究领域。本文采用高斯混合模型-通用背景模型(GMM-UBM)作为分类器组成录音设备识别系统。我们研究了mel频率倒谱系数(MFCCs)和功率归一化倒谱系数(PNCCs)对这个问题的性能。对14部手机的录音进行的实验表明,mfccc比PNCCs在手机识别方面更有效。我们发现,将mfc和能量特征叠加可以提高识别性能。我们还研究了扬声器失配和声学特征去噪处理对这一问题的影响。最高识别准确率为97.71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信