Adaptive 3D Deep Learning for Multi-carrier Coherent Optical Communications

E. Giacoumidis
{"title":"Adaptive 3D Deep Learning for Multi-carrier Coherent Optical Communications","authors":"E. Giacoumidis","doi":"10.1109/MCSI.2018.00029","DOIUrl":null,"url":null,"abstract":"Fiber-induced nonlinearities significantly limit the transmission performance of coherent optical signals. Here, a novel adaptive 3D deep learning nonlinear equalizer based on an artificial neural network is experimentally demonstrated for multi-channel coherent optical orthogonal frequency division multiplexing. It is shown that adaptive 3D deep learning outperforms 2D machine learning and the deterministic goldstandard digital back-propagation at 3200 km of single-mode fibre transmission. This occurs since our technique can tackle both deterministic and stochastic nonlinear distortions.","PeriodicalId":410941,"journal":{"name":"2018 5th International Conference on Mathematics and Computers in Sciences and Industry (MCSI)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Mathematics and Computers in Sciences and Industry (MCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSI.2018.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Fiber-induced nonlinearities significantly limit the transmission performance of coherent optical signals. Here, a novel adaptive 3D deep learning nonlinear equalizer based on an artificial neural network is experimentally demonstrated for multi-channel coherent optical orthogonal frequency division multiplexing. It is shown that adaptive 3D deep learning outperforms 2D machine learning and the deterministic goldstandard digital back-propagation at 3200 km of single-mode fibre transmission. This occurs since our technique can tackle both deterministic and stochastic nonlinear distortions.
多载波相干光通信的自适应三维深度学习
光纤诱导的非线性极大地限制了相干光信号的传输性能。本文对一种基于人工神经网络的自适应三维深度学习非线性均衡器进行了实验验证,用于多通道相干光正交频分复用。研究表明,在3200公里的单模光纤传输中,自适应3D深度学习优于2D机器学习和确定性黄金标准数字反向传播。这是因为我们的技术可以处理确定性和随机非线性扭曲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信