{"title":"H∞ optimal filtering and control of wind energy conversion systems","authors":"H. M. Nguyen, D. Naidu, S. Mousavinezhad","doi":"10.1109/EIT.2013.6632650","DOIUrl":null,"url":null,"abstract":"This paper presents a reduced-order H∞ optimal control for wind energy conversion systems. Two different timescale (slow and fast) dynamics of wind energy conversion systems are separated and processed independently using the singular perturbation theory. By using the decomposition technique, low-order, independent H∞ optimal filters and controllers are obtained, which provide computational advantages and enable implementations with different sampling rates. The control robustness and efficiency are shown by computer simulations.","PeriodicalId":201202,"journal":{"name":"IEEE International Conference on Electro-Information Technology , EIT 2013","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Electro-Information Technology , EIT 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2013.6632650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a reduced-order H∞ optimal control for wind energy conversion systems. Two different timescale (slow and fast) dynamics of wind energy conversion systems are separated and processed independently using the singular perturbation theory. By using the decomposition technique, low-order, independent H∞ optimal filters and controllers are obtained, which provide computational advantages and enable implementations with different sampling rates. The control robustness and efficiency are shown by computer simulations.