Stochastic policy search for variance-penalized semi-Markov control

A. Gosavi, Mandar Purohit
{"title":"Stochastic policy search for variance-penalized semi-Markov control","authors":"A. Gosavi, Mandar Purohit","doi":"10.1109/WSC.2011.6147989","DOIUrl":null,"url":null,"abstract":"The variance-penalized metric in Markov decision processes (MDPs) seeks to maximize the average reward minus a scalar times the variance of rewards. In this paper, our goal is to study the same metric in the context of the semi-Markov decision process (SMDP). In the SMDP, unlike the MDP, the time spent in each transition is not identical and may in fact be a random variable. We first develop an expression for the variance of rewards in the SMDPs, and then formulate the VP-SMDP. Our interest here is in solving the problem without generating the underlying transition probabilities of the Markov chains. We propose the use of two stochastic search techniques, namely simultaneous perturbation and learning automata, to solve the problem; these techniques use stochastic policies and can be used within simulators, thereby avoiding the generation of the transition probabilities.","PeriodicalId":246140,"journal":{"name":"Proceedings of the 2011 Winter Simulation Conference (WSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2011 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2011.6147989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The variance-penalized metric in Markov decision processes (MDPs) seeks to maximize the average reward minus a scalar times the variance of rewards. In this paper, our goal is to study the same metric in the context of the semi-Markov decision process (SMDP). In the SMDP, unlike the MDP, the time spent in each transition is not identical and may in fact be a random variable. We first develop an expression for the variance of rewards in the SMDPs, and then formulate the VP-SMDP. Our interest here is in solving the problem without generating the underlying transition probabilities of the Markov chains. We propose the use of two stochastic search techniques, namely simultaneous perturbation and learning automata, to solve the problem; these techniques use stochastic policies and can be used within simulators, thereby avoiding the generation of the transition probabilities.
方差惩罚半马尔可夫控制的随机策略搜索
马尔可夫决策过程(mdp)中的方差惩罚度量试图最大化平均奖励减去一个标量乘以奖励方差。在本文中,我们的目标是在半马尔可夫决策过程(SMDP)的背景下研究相同的度量。在SMDP中,与MDP不同,每次转换所花费的时间是不相同的,实际上可能是一个随机变量。我们首先建立了smdp中奖励方差的表达式,然后制定了VP-SMDP。我们感兴趣的是在不产生马尔可夫链的潜在转移概率的情况下解决问题。我们提出使用两种随机搜索技术,即同步摄动和学习自动机来解决这个问题;这些技术使用随机策略,可以在模拟器中使用,从而避免产生转移概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信