{"title":"A light-weight statically scheduled network-on-chip","authors":"R. B. Sorensen, Martin Schoeberl, J. Sparsø","doi":"10.1109/NORCHP.2012.6403129","DOIUrl":null,"url":null,"abstract":"This paper investigates how a light-weight, statically scheduled network-on-chip (NoC) for real-time systems can be designed and implemented. The NoC provides communication channels between all cores with equal bandwidth and latency. The design is FPGA-friendly and consumes a minimum of resources. We implemented a 64 core 16-bit multiprocessor connected with the proposed NoC in a low-cost FPGA.","PeriodicalId":332731,"journal":{"name":"NORCHIP 2012","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NORCHIP 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NORCHP.2012.6403129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
This paper investigates how a light-weight, statically scheduled network-on-chip (NoC) for real-time systems can be designed and implemented. The NoC provides communication channels between all cores with equal bandwidth and latency. The design is FPGA-friendly and consumes a minimum of resources. We implemented a 64 core 16-bit multiprocessor connected with the proposed NoC in a low-cost FPGA.