Graphene for surface enhanced Raman scattering (SERS) molecular sensors

Ying-Ren Chen, W. Chen, Y. Tzeng
{"title":"Graphene for surface enhanced Raman scattering (SERS) molecular sensors","authors":"Ying-Ren Chen, W. Chen, Y. Tzeng","doi":"10.1109/NANO.2017.8117453","DOIUrl":null,"url":null,"abstract":"In this paper, graphene for SERS molecular sensors is reviewed along with a report of new innovations. Arrays of silver nanoparticles were selectively deposited on copper, on which discrete graphene domains had been synthesized. Closely spaced silver nanoparticles create strong local electric fields by means of laser induced plasmonic coupling. Signal intensity measured from Raman scattering of low concentration of R6G probe molecules was enhanced by more than eight orders of magnitude in comparison with that without closely spaced silver nanoparticles surrounded by graphene.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2017.8117453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, graphene for SERS molecular sensors is reviewed along with a report of new innovations. Arrays of silver nanoparticles were selectively deposited on copper, on which discrete graphene domains had been synthesized. Closely spaced silver nanoparticles create strong local electric fields by means of laser induced plasmonic coupling. Signal intensity measured from Raman scattering of low concentration of R6G probe molecules was enhanced by more than eight orders of magnitude in comparison with that without closely spaced silver nanoparticles surrounded by graphene.
石墨烯用于表面增强拉曼散射(SERS)分子传感器
本文综述了用于SERS分子传感器的石墨烯,并报道了新的创新成果。将银纳米颗粒阵列选择性地沉积在铜上,并在其上合成了离散的石墨烯畴。紧密间隔的银纳米粒子通过激光诱导等离子体耦合产生强大的局部电场。低浓度R6G探针分子的拉曼散射信号强度比没有被石墨烯包围的银纳米粒子增强了8个数量级以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信