Chinese text categorization based on deep belief networks

Jiapeng Song, Sijun Qin, Pengzhou Zhang
{"title":"Chinese text categorization based on deep belief networks","authors":"Jiapeng Song, Sijun Qin, Pengzhou Zhang","doi":"10.1109/ICIS.2016.7550914","DOIUrl":null,"url":null,"abstract":"With the rapid development of Internet, text categorization becomes a mission-critical technology that organizes and processes large amounts of data in document. Deep belief networks have powerful abilities of learning and can extract highly distinguishable features from the high-dimensional original feature space. So a new Chinese text categorization algorithm based on deep learning structure and semi-supervised deep belief networks is presented in this paper. We extract original feature with TFIDF-ICF, construct the text classification model based on DBN, and select the number of hidden layers and hidden units. Our experimental results indicated that the performance of text categorization algorithm based on deep belief networks is better than support vector machine.","PeriodicalId":336322,"journal":{"name":"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2016.7550914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

With the rapid development of Internet, text categorization becomes a mission-critical technology that organizes and processes large amounts of data in document. Deep belief networks have powerful abilities of learning and can extract highly distinguishable features from the high-dimensional original feature space. So a new Chinese text categorization algorithm based on deep learning structure and semi-supervised deep belief networks is presented in this paper. We extract original feature with TFIDF-ICF, construct the text classification model based on DBN, and select the number of hidden layers and hidden units. Our experimental results indicated that the performance of text categorization algorithm based on deep belief networks is better than support vector machine.
基于深度信念网络的中文文本分类
随着Internet的快速发展,文本分类成为对文档中大量数据进行组织和处理的关键技术。深度信念网络具有强大的学习能力,可以从高维原始特征空间中提取高度可区分的特征。为此,本文提出了一种基于深度学习结构和半监督深度信念网络的中文文本分类算法。利用TFIDF-ICF提取原始特征,构建基于DBN的文本分类模型,选择隐藏层数和隐藏单元。实验结果表明,基于深度信念网络的文本分类算法的性能优于支持向量机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信