Luan C. Klein, Cesar Augusto Tacla, Mariela Morveli-Espinoza
{"title":"Impact of the variation of the number of agents in the cooperative learning of optimal paths using LRTA-star","authors":"Luan C. Klein, Cesar Augusto Tacla, Mariela Morveli-Espinoza","doi":"10.5753/eniac.2021.18242","DOIUrl":null,"url":null,"abstract":"Algoritmos de aprendizado de caminhos ótimos estão presentes em diversos cenários. Diante disso, o LRTA* (learning real time A*) surge como uma opção que concilia planejamento e ação. O presente artigo estuda como a variação da quantidade de agentes impacta nas distâncias percorridas por eles para encontrar o caminho ótimo utilizando o LRTA* em ambientes estáticos. Através de experimentos, observou-se a existência de uma relação de que ao aumentar o número de agentes, a quantidade de movimentos totais e per capita tendem a curvas matemáticas, sendo elas uma linear e uma exponencial decrescente, respectivamente. Por meio dessa relação, é possível definir a melhor quantidade de agentes na busca do caminho ótimo em termos de desempenho.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Algoritmos de aprendizado de caminhos ótimos estão presentes em diversos cenários. Diante disso, o LRTA* (learning real time A*) surge como uma opção que concilia planejamento e ação. O presente artigo estuda como a variação da quantidade de agentes impacta nas distâncias percorridas por eles para encontrar o caminho ótimo utilizando o LRTA* em ambientes estáticos. Através de experimentos, observou-se a existência de uma relação de que ao aumentar o número de agentes, a quantidade de movimentos totais e per capita tendem a curvas matemáticas, sendo elas uma linear e uma exponencial decrescente, respectivamente. Por meio dessa relação, é possível definir a melhor quantidade de agentes na busca do caminho ótimo em termos de desempenho.