On the convergence of HLMS Algorithm

Javier Murillo, S. Guillaume, E. Tapia, P. Bulacio
{"title":"On the convergence of HLMS Algorithm","authors":"Javier Murillo, S. Guillaume, E. Tapia, P. Bulacio","doi":"10.2991/eusflat.2011.147","DOIUrl":null,"url":null,"abstract":"In multicriteria decision making, the study of attribute contributions is crucial to attain correct decisions. Fuzzy measures allow a complete description of the joint behavior of attribute subsets. However, the determination of fuzzy measures is often hard. A common way to identify fuzzy measures is HLMS (Heuristic Least Mean Squares) algorithm. In this paper, the convergence of the HLMS algorithm is analyzed. First, we show that the learning rate parameter ( ) dominates the convergence of HLMS. Second, we provide an upper bound for that guarantees HLMS convergence. In addition, a toy example shows the descriptive power of fuzzy measures versus the poverty of individual measures.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In multicriteria decision making, the study of attribute contributions is crucial to attain correct decisions. Fuzzy measures allow a complete description of the joint behavior of attribute subsets. However, the determination of fuzzy measures is often hard. A common way to identify fuzzy measures is HLMS (Heuristic Least Mean Squares) algorithm. In this paper, the convergence of the HLMS algorithm is analyzed. First, we show that the learning rate parameter ( ) dominates the convergence of HLMS. Second, we provide an upper bound for that guarantees HLMS convergence. In addition, a toy example shows the descriptive power of fuzzy measures versus the poverty of individual measures.
HLMS算法的收敛性
在多准则决策中,属性贡献的研究对决策的正确性至关重要。模糊度量允许对属性子集的联合行为进行完整的描述。然而,模糊度量的确定往往是困难的。一种常用的模糊度量识别方法是启发式最小均方算法(HLMS)。本文分析了HLMS算法的收敛性。首先,我们证明学习率参数()主导HLMS的收敛性。其次,给出了保证HLMS收敛性的上界。此外,一个简单的例子显示了模糊度量相对于个体度量的贫困程度的描述能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信