mFAST: Automatic Stoke Evaluation System for Time-Critical Treatment with Multimodal Feature Collection and Machine Learning Classification

Eunjeong Park, Taehwa Han, H. Nam
{"title":"mFAST: Automatic Stoke Evaluation System for Time-Critical Treatment with Multimodal Feature Collection and Machine Learning Classification","authors":"Eunjeong Park, Taehwa Han, H. Nam","doi":"10.1145/3384613.3384653","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an automatic evaluation system, mFAST, for the examination of neurological deficits and personalized stroke prediction. The proposed system enables mobile monitoring of stroke patients utilizing sensors and machine learning techniques. This research is composed of objective and rapid measurement of neurological deficits of stroke patients; development of stroke-triage prediction; and data collection of monitored neurological deficits and personalized stroke prediction system to rapidly recognize the symptoms and enhance the treatment in hospitals. The research proposes to implement the mobile services for FAST (Face, Arm, Speech, Time) stroke activation to measure face palsy, arm weakness, speech disturbance and to analyze the automatically collected data. The measured FAST features can be used in the prediction of stroke scores including NIHSS (National Institute of Health for Stroke Scale), CPSS (Cincinnati Pre-hospital Stroke Scale), MRC (Medial Research Council) to enable stroke patients to be treated in a restricted time frame.","PeriodicalId":214098,"journal":{"name":"Proceedings of the 2020 12th International Conference on Computer and Automation Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 12th International Conference on Computer and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3384613.3384653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we introduce an automatic evaluation system, mFAST, for the examination of neurological deficits and personalized stroke prediction. The proposed system enables mobile monitoring of stroke patients utilizing sensors and machine learning techniques. This research is composed of objective and rapid measurement of neurological deficits of stroke patients; development of stroke-triage prediction; and data collection of monitored neurological deficits and personalized stroke prediction system to rapidly recognize the symptoms and enhance the treatment in hospitals. The research proposes to implement the mobile services for FAST (Face, Arm, Speech, Time) stroke activation to measure face palsy, arm weakness, speech disturbance and to analyze the automatically collected data. The measured FAST features can be used in the prediction of stroke scores including NIHSS (National Institute of Health for Stroke Scale), CPSS (Cincinnati Pre-hospital Stroke Scale), MRC (Medial Research Council) to enable stroke patients to be treated in a restricted time frame.
mFAST:基于多模态特征收集和机器学习分类的时间临界处理的自动脑卒中评估系统
在本文中,我们介绍了一个自动评估系统,mFAST,用于检查神经功能缺陷和个性化中风预测。该系统能够利用传感器和机器学习技术对中风患者进行移动监测。本研究包括对脑卒中患者神经功能缺损的客观、快速测量;脑卒中分诊预测的研究进展监测神经功能缺损的数据收集和个性化的脑卒中预测系统,以快速识别症状,加强医院的治疗。本研究提出实现FAST (Face, Arm, Speech, Time)脑卒中激活移动服务,用于测量面部麻痹、手臂无力、语言障碍,并对自动采集的数据进行分析。测量的FAST特征可用于预测中风评分,包括NIHSS(美国国立卫生研究院中风量表)、CPSS(辛辛那提院前中风量表)、MRC(医学研究委员会),使中风患者能够在有限的时间内得到治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信