Wavelet de-noising double-threshold optimization method and its application

Chuanxin Wang, Cheng Shao, Yu Han
{"title":"Wavelet de-noising double-threshold optimization method and its application","authors":"Chuanxin Wang, Cheng Shao, Yu Han","doi":"10.1109/ICCA.2010.5524308","DOIUrl":null,"url":null,"abstract":"A method based on ant colony algorithm is given for optimizing wavelet de-noising double-threshold. The optimization interval and the objective function are chosen according to the difference of autocorrelation coefficient, which belong to signal's wavelet coefficient and noise's wavelet coefficient respectively. The optimal upper threshold and lower threshold are calculated by ant colony algorithm. Simulation and compressor vibration fault detection application results demonstrate that the proposed method can optimize the de-noising threshold and de-noising effectively.","PeriodicalId":155562,"journal":{"name":"IEEE ICCA 2010","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE ICCA 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2010.5524308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A method based on ant colony algorithm is given for optimizing wavelet de-noising double-threshold. The optimization interval and the objective function are chosen according to the difference of autocorrelation coefficient, which belong to signal's wavelet coefficient and noise's wavelet coefficient respectively. The optimal upper threshold and lower threshold are calculated by ant colony algorithm. Simulation and compressor vibration fault detection application results demonstrate that the proposed method can optimize the de-noising threshold and de-noising effectively.
小波去噪双阈值优化方法及其应用
提出了一种基于蚁群算法的小波去噪双阈值优化方法。根据自相关系数的不同选择优化区间和目标函数,分别属于信号的小波系数和噪声的小波系数。采用蚁群算法计算最优上阈值和下阈值。仿真和压缩机振动故障检测应用结果表明,该方法能有效地优化降噪阈值和降噪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信