Control of Standalone DFIG based Wind Turbine Generator using Machine Learning Algorithm

R. Mahalakshmi, K. Reddy, M. Gautam
{"title":"Control of Standalone DFIG based Wind Turbine Generator using Machine Learning Algorithm","authors":"R. Mahalakshmi, K. Reddy, M. Gautam","doi":"10.1109/ICECA49313.2020.9297603","DOIUrl":null,"url":null,"abstract":"Electrical energy extraction from non-conventional energy sources such as solar, wind, etc., is very essential nowadays due to the huge electricity demand. The integration of these sources into the grid/electrical loads face many technical challenges like grid synchronization, power oscillations, etc., The modern wind power plants use Doubly Fed Induction Generator (DFIG) based WTGs as it has embedded Rotor Side Converter (RSC) and Stator Side Converter (SSC). This paper focuses on the performance analysis of standalone Doubly Fed Induction Generator (DFIG) based Wind Turbine using a new control strategy at RSC side. The RSC control is developed with the use of a linear regression algorithm under the Machine Learning (ML) technique. The effectiveness of the controller is validated using MATLAB/Simulink for the different operating conditions such as varying wind speed and load variations etc., The experimental setup of RSC is implemented in hardware and the results are discussed.","PeriodicalId":297285,"journal":{"name":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA49313.2020.9297603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Electrical energy extraction from non-conventional energy sources such as solar, wind, etc., is very essential nowadays due to the huge electricity demand. The integration of these sources into the grid/electrical loads face many technical challenges like grid synchronization, power oscillations, etc., The modern wind power plants use Doubly Fed Induction Generator (DFIG) based WTGs as it has embedded Rotor Side Converter (RSC) and Stator Side Converter (SSC). This paper focuses on the performance analysis of standalone Doubly Fed Induction Generator (DFIG) based Wind Turbine using a new control strategy at RSC side. The RSC control is developed with the use of a linear regression algorithm under the Machine Learning (ML) technique. The effectiveness of the controller is validated using MATLAB/Simulink for the different operating conditions such as varying wind speed and load variations etc., The experimental setup of RSC is implemented in hardware and the results are discussed.
单机DFIG风力发电机的机器学习控制
由于目前巨大的电力需求,从太阳能、风能等非常规能源中提取电能是非常必要的。将这些源集成到电网/电力负载中面临许多技术挑战,如电网同步,功率振荡等。现代风力发电厂使用基于双馈感应发电机(DFIG)的wtg,因为它嵌入了转子侧变流器(RSC)和定子侧变流器(SSC)。本文研究了采用RSC侧控制策略的单机双馈感应发电机(DFIG)风力发电机组的性能分析。RSC控制是利用机器学习(ML)技术下的线性回归算法开发的。利用MATLAB/Simulink验证了该控制器在变风速、变负荷等不同工况下的有效性,并在硬件上实现了RSC的实验装置,并对实验结果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信