Facial age estimation and gender classification using multi level local phase quantization

Salah Eddine Bekhouche, A. Ouafi, A. Benlamoudi, A. Taleb-Ahmed, A. Hadid
{"title":"Facial age estimation and gender classification using multi level local phase quantization","authors":"Salah Eddine Bekhouche, A. Ouafi, A. Benlamoudi, A. Taleb-Ahmed, A. Hadid","doi":"10.1109/CEIT.2015.7233141","DOIUrl":null,"url":null,"abstract":"Facial demographic classification is an attractive topic in computer vision. Attributes such as age and gender can be used in many real life application such as face recognition and internet safety for minors. In this paper, we present a novel approach for age estimation and gender classification under uncontrolled conditions following the standard protocols for fair comparaison. Our proposed approach is based on Multi Level Local Phase Quantization (ML-LPQ) features which are extracted from normalized face images. Two different Support Vector Machines (SVM) models are used to predict the age group and the gender of a person. The experimental results on the benchmark Image of Groups dataset showed the superiority of our approach compared to the state-of-the-art.","PeriodicalId":281793,"journal":{"name":"2015 3rd International Conference on Control, Engineering & Information Technology (CEIT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Conference on Control, Engineering & Information Technology (CEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIT.2015.7233141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

Facial demographic classification is an attractive topic in computer vision. Attributes such as age and gender can be used in many real life application such as face recognition and internet safety for minors. In this paper, we present a novel approach for age estimation and gender classification under uncontrolled conditions following the standard protocols for fair comparaison. Our proposed approach is based on Multi Level Local Phase Quantization (ML-LPQ) features which are extracted from normalized face images. Two different Support Vector Machines (SVM) models are used to predict the age group and the gender of a person. The experimental results on the benchmark Image of Groups dataset showed the superiority of our approach compared to the state-of-the-art.
基于多级局部相位量化的面部年龄估计与性别分类
人脸人口统计分类是计算机视觉领域一个很有吸引力的研究课题。年龄和性别等属性可用于人脸识别和未成年人网络安全等许多现实生活应用。在本文中,我们提出了一种新的方法,年龄估计和性别分类在非受控条件下遵循公平比较的标准协议。我们提出的方法是基于从归一化的人脸图像中提取的多级局部相位量化(ML-LPQ)特征。使用两种不同的支持向量机(SVM)模型来预测一个人的年龄和性别。在基准Image of Groups数据集上的实验结果表明,与最先进的方法相比,我们的方法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信