Multisensor Fusion Algorithms for Maneuvering Target Tracking

L. Fong, Chan-Yu Fan
{"title":"Multisensor Fusion Algorithms for Maneuvering Target Tracking","authors":"L. Fong, Chan-Yu Fan","doi":"10.1109/ICELIE.2006.347216","DOIUrl":null,"url":null,"abstract":"Utilization of information acquired from a sensor network to improve the tracking accuracy is one of the most important issues in sensor network research. In this paper, two state-vector multisensor fusion algorithms, estimated weights method (EWM) and modified probabilistic neural network (MPNN), using decoupling technique are investigated to handle an arbitrary number of sensors under the assumption that the sensor measurement errors are independent across sensors. Simulation results are presented comparing the performance of the EWM with the MPNN and with the sensor-based decoupled Kalman filtering algorithms","PeriodicalId":345289,"journal":{"name":"2006 1ST IEEE International Conference on E-Learning in Industrial Electronics","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1ST IEEE International Conference on E-Learning in Industrial Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICELIE.2006.347216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Utilization of information acquired from a sensor network to improve the tracking accuracy is one of the most important issues in sensor network research. In this paper, two state-vector multisensor fusion algorithms, estimated weights method (EWM) and modified probabilistic neural network (MPNN), using decoupling technique are investigated to handle an arbitrary number of sensors under the assumption that the sensor measurement errors are independent across sensors. Simulation results are presented comparing the performance of the EWM with the MPNN and with the sensor-based decoupled Kalman filtering algorithms
机动目标跟踪的多传感器融合算法
利用传感器网络获取的信息来提高跟踪精度是传感器网络研究的重要问题之一。本文研究了两种状态向量多传感器融合算法——估计权值法(EWM)和采用解耦技术的改进概率神经网络(MPNN),在假设传感器测量误差在传感器间独立的情况下处理任意数量的传感器。仿真结果比较了EWM与MPNN和基于传感器的解耦卡尔曼滤波算法的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信