Thermal constrained workload distribution for maximizing throughput on multi-core processors

Zhe Wang, S. Ranka
{"title":"Thermal constrained workload distribution for maximizing throughput on multi-core processors","authors":"Zhe Wang, S. Ranka","doi":"10.1109/GREENCOMP.2010.5598302","DOIUrl":null,"url":null,"abstract":"Power density and heat density of multi-core processor system are increasing exponentially based on Moore's Law. The reliability of a chip is severely impacted by temperature “hot spots”. In this paper, we study scheduling algorithms for multi-core processors that incorporate temperature constraints. Our goal is to optimize the workload distribution on a multicore processor to maximize throughput with a given maximum operating temperature. Our algorithms are targeted for a larger class of data parallel and task parallel applications. Experimental results show that our algorithms are computationally fast, maximize throughput and provide effective temperature management.","PeriodicalId":262148,"journal":{"name":"International Conference on Green Computing","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Green Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENCOMP.2010.5598302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Power density and heat density of multi-core processor system are increasing exponentially based on Moore's Law. The reliability of a chip is severely impacted by temperature “hot spots”. In this paper, we study scheduling algorithms for multi-core processors that incorporate temperature constraints. Our goal is to optimize the workload distribution on a multicore processor to maximize throughput with a given maximum operating temperature. Our algorithms are targeted for a larger class of data parallel and task parallel applications. Experimental results show that our algorithms are computationally fast, maximize throughput and provide effective temperature management.
用于在多核处理器上最大化吞吐量的热约束工作负载分布
多核处理器系统的功率密度和热密度按照摩尔定律呈指数级增长。温度“热点”严重影响芯片的可靠性。本文研究了考虑温度约束的多核处理器调度算法。我们的目标是优化多核处理器上的工作负载分布,以在给定的最高工作温度下最大化吞吐量。我们的算法是针对更大类别的数据并行和任务并行应用程序。实验结果表明,该算法计算速度快,吞吐量最大化,并提供有效的温度管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信