AReN

James Ferlez, Yasser Shoukry
{"title":"AReN","authors":"James Ferlez, Yasser Shoukry","doi":"10.1145/3365365.3382213","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of automatically designing a Rectified Linear Unit (ReLU) Neural Network (NN) architecture that is sufficient to implement the optimal Model Predictive Control (MPC) strategy for an LTI system with quadratic cost. Specifically, we propose AReN, an algorithm to generate Assured ReLU Architectures. AReN takes as input an LTI system with quadratic cost specification, and outputs a ReLU NN architecture with the assurance that there exist network weights that exactly implement the associated MPC controller. AReN thus offers new insight into the design of ReLU NN architectures for the control of LTI systems: instead of training a heuristically chosen NN architecture on data - or iterating over many architectures until a suitable one is found - AReN can suggest an adequate NN architecture before training begins. While several previous works were inspired by the fact that ReLU NN controllers and optimal MPC controllers are both Continuous, Piecewise-Linear (CPWL) functions, exploiting this similarity to design NN architectures with correctness guarantees has remained elusive. AReN achieves this using two novel features. First, we reinterpret a recent result about the implementation of CPWL functions via ReLU NNs to show that a CPWL function may be implemented by a ReLU architecture that is determined by the number of distinct affine regions in the function. Second, we show that we can efficiently over-approximate the number of affine regions in the optimal MPC controller without solving the MPC problem exactly. Together, these results connect the MPC problem to a ReLU NN implementation without explicitly solving the MPC: the result is a NN architecture that has the assurance that it can implement the MPC controller. We show through numerical results the effectiveness of AReN in designing an NN architecture.","PeriodicalId":162317,"journal":{"name":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365365.3382213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, we consider the problem of automatically designing a Rectified Linear Unit (ReLU) Neural Network (NN) architecture that is sufficient to implement the optimal Model Predictive Control (MPC) strategy for an LTI system with quadratic cost. Specifically, we propose AReN, an algorithm to generate Assured ReLU Architectures. AReN takes as input an LTI system with quadratic cost specification, and outputs a ReLU NN architecture with the assurance that there exist network weights that exactly implement the associated MPC controller. AReN thus offers new insight into the design of ReLU NN architectures for the control of LTI systems: instead of training a heuristically chosen NN architecture on data - or iterating over many architectures until a suitable one is found - AReN can suggest an adequate NN architecture before training begins. While several previous works were inspired by the fact that ReLU NN controllers and optimal MPC controllers are both Continuous, Piecewise-Linear (CPWL) functions, exploiting this similarity to design NN architectures with correctness guarantees has remained elusive. AReN achieves this using two novel features. First, we reinterpret a recent result about the implementation of CPWL functions via ReLU NNs to show that a CPWL function may be implemented by a ReLU architecture that is determined by the number of distinct affine regions in the function. Second, we show that we can efficiently over-approximate the number of affine regions in the optimal MPC controller without solving the MPC problem exactly. Together, these results connect the MPC problem to a ReLU NN implementation without explicitly solving the MPC: the result is a NN architecture that has the assurance that it can implement the MPC controller. We show through numerical results the effectiveness of AReN in designing an NN architecture.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信