Complex system health analysis by the Graphical Evolutionary Hybrid Neuro-Observer (GNeuroObs)

F. J. Maldonado, S. Oonk, R. Selmic
{"title":"Complex system health analysis by the Graphical Evolutionary Hybrid Neuro-Observer (GNeuroObs)","authors":"F. J. Maldonado, S. Oonk, R. Selmic","doi":"10.1109/AUTEST.2016.7589604","DOIUrl":null,"url":null,"abstract":"Obtaining methodologies that enable predictive health monitoring of components degradation and the propagation of related effects across the overall system is a need when designing complex systems (such as autonomous vehicles, robotic systems, and aerospace platforms). In this paper, a current software development is presented for workflow generation and visualization to evaluate how component degradation impacts an entire system. Relevant technical aspects of this “Graphical Evolutionary Hybrid Neuro-Observer” (GNeuroObs) include: (a) highly accurate system modeling; (b) techniques for system level analysis; and (c) low level entity instantiations that builds on health monitoring and root cause analysis. The GNeuroObs is described with the application of a fuel subsystem. In that system, the methodology allows for describing interrelations among a set of heterogeneous sensors, where Health Monitoring algorithms are used to analyze failures in entities and propagation of effects across the system.","PeriodicalId":314357,"journal":{"name":"2016 IEEE AUTOTESTCON","volume":"415 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE AUTOTESTCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTEST.2016.7589604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Obtaining methodologies that enable predictive health monitoring of components degradation and the propagation of related effects across the overall system is a need when designing complex systems (such as autonomous vehicles, robotic systems, and aerospace platforms). In this paper, a current software development is presented for workflow generation and visualization to evaluate how component degradation impacts an entire system. Relevant technical aspects of this “Graphical Evolutionary Hybrid Neuro-Observer” (GNeuroObs) include: (a) highly accurate system modeling; (b) techniques for system level analysis; and (c) low level entity instantiations that builds on health monitoring and root cause analysis. The GNeuroObs is described with the application of a fuel subsystem. In that system, the methodology allows for describing interrelations among a set of heterogeneous sensors, where Health Monitoring algorithms are used to analyze failures in entities and propagation of effects across the system.
基于图形进化混合神经观测器(GNeuroObs)的复杂系统健康分析
在设计复杂系统(如自动驾驶汽车、机器人系统和航空航天平台)时,需要获得能够对组件退化和相关影响在整个系统中的传播进行预测性健康监测的方法。本文介绍了一种用于工作流生成和可视化的当前软件开发,以评估组件退化如何影响整个系统。这种“图形进化混合神经观察者”(GNeuroObs)的相关技术方面包括:(a)高度精确的系统建模;(b)系统层面分析的技术;(c)基于运行状况监控和根本原因分析的低级实体实例化。介绍了燃料子系统在GNeuroObs系统中的应用。在该系统中,该方法允许描述一组异构传感器之间的相互关系,其中使用Health Monitoring算法来分析实体中的故障和跨系统的影响传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信