A CubeSat deployable solar panel system

T. Mcguire, Michael P. Hirsch, Michael Parsons, S. Leake, J. Straub
{"title":"A CubeSat deployable solar panel system","authors":"T. Mcguire, Michael P. Hirsch, Michael Parsons, S. Leake, J. Straub","doi":"10.1117/12.2223566","DOIUrl":null,"url":null,"abstract":"The power usage of CubeSat's onboard systems has increased with the complexity of the systems included. This paper presents a deployment system design which creates a plane of solar panels to collect energy. This allows more panels to be in direct normal sunlight at any given point (in conjunction with the onboard attitude determination and control system), facilitating increased power generation. The deployable system is comprised of a printed circuit board (holding the solar cells) which is attached to an aluminum hinge. The efficacy of this approach for power generation and its simplicity, as compared to other prospective approaches, are assessed herein.","PeriodicalId":299313,"journal":{"name":"SPIE Commercial + Scientific Sensing and Imaging","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Commercial + Scientific Sensing and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2223566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The power usage of CubeSat's onboard systems has increased with the complexity of the systems included. This paper presents a deployment system design which creates a plane of solar panels to collect energy. This allows more panels to be in direct normal sunlight at any given point (in conjunction with the onboard attitude determination and control system), facilitating increased power generation. The deployable system is comprised of a printed circuit board (holding the solar cells) which is attached to an aluminum hinge. The efficacy of this approach for power generation and its simplicity, as compared to other prospective approaches, are assessed herein.
立方体卫星可展开太阳能电池板系统
CubeSat机载系统的功耗随着系统复杂性的增加而增加。本文提出了一种利用太阳能板平面收集能量的部署系统设计。这允许更多的面板在任何给定的点直接正常的阳光下(与机载姿态确定和控制系统结合),促进增加的发电量。可展开的系统由印刷电路板(容纳太阳能电池)组成,该电路板连接到铝制铰链上。与其他前瞻性方法相比,本文对这种发电方法的有效性及其简单性进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信