Learning context-aware mobile robot navigation in home environments

D. Bacciu, C. Gallicchio, A. Micheli, M. D. Rocco, A. Saffiotti
{"title":"Learning context-aware mobile robot navigation in home environments","authors":"D. Bacciu, C. Gallicchio, A. Micheli, M. D. Rocco, A. Saffiotti","doi":"10.1109/IISA.2014.6878733","DOIUrl":null,"url":null,"abstract":"We present an approach to make planning adaptive in order to enable context-aware mobile robot navigation. We integrate a model-based planner with a distributed learning system based on reservoir computing, to yield personalized planning and resource allocations that account for user preferences and environmental changes. We demonstrate our approach in a real robot ecology, and show that the learning system can effectively exploit historical data about navigation performance to modify the models in the planner, without any prior information oncerning the phenomenon being modeled. The plans produced by the adapted CL fail more rarely than the ones generated by a non-adaptive planner. The distributed learning system handles the new learning task autonomously, and is able to automatically identify the sensorial information most relevant for the task, thus reducing the communication and computational overhead of the predictive task.","PeriodicalId":298835,"journal":{"name":"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2014.6878733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

We present an approach to make planning adaptive in order to enable context-aware mobile robot navigation. We integrate a model-based planner with a distributed learning system based on reservoir computing, to yield personalized planning and resource allocations that account for user preferences and environmental changes. We demonstrate our approach in a real robot ecology, and show that the learning system can effectively exploit historical data about navigation performance to modify the models in the planner, without any prior information oncerning the phenomenon being modeled. The plans produced by the adapted CL fail more rarely than the ones generated by a non-adaptive planner. The distributed learning system handles the new learning task autonomously, and is able to automatically identify the sensorial information most relevant for the task, thus reducing the communication and computational overhead of the predictive task.
在家庭环境中学习情境感知移动机器人导航
我们提出了一种使规划自适应的方法,以实现上下文感知移动机器人导航。我们将基于模型的规划器与基于水库计算的分布式学习系统集成在一起,根据用户偏好和环境变化产生个性化规划和资源分配。我们在一个真实的机器人生态系统中展示了我们的方法,并表明学习系统可以有效地利用导航性能的历史数据来修改规划器中的模型,而不需要任何关于建模现象的先验信息。与非适应性规划器生成的计划相比,由适应性规划器生成的计划更少失败。分布式学习系统能够自主处理新的学习任务,并能够自动识别与任务最相关的感官信息,从而减少预测任务的通信和计算开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信