A Trademark Retrieval Method Based on Support Vector Machines Self-Learning

Ya-Li Qi
{"title":"A Trademark Retrieval Method Based on Support Vector Machines Self-Learning","authors":"Ya-Li Qi","doi":"10.1109/IFCSTA.2009.170","DOIUrl":null,"url":null,"abstract":"Relevance feedback is a good method for semantic gap in image retrieval. In this paper we propose a method which uses support vector machines for conducting effective relevance feedback for trademark retrieval. The algorithm takes the test results to adjust the already trained support vector machines. We select the Tamura textures features which consistent with human vision perception and the low-level feature of image to trian support vector machines. Experimental results show that it achieves significantly higher search accuracy after just three or four rounds of relevance feedback.","PeriodicalId":256032,"journal":{"name":"2009 International Forum on Computer Science-Technology and Applications","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Forum on Computer Science-Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFCSTA.2009.170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Relevance feedback is a good method for semantic gap in image retrieval. In this paper we propose a method which uses support vector machines for conducting effective relevance feedback for trademark retrieval. The algorithm takes the test results to adjust the already trained support vector machines. We select the Tamura textures features which consistent with human vision perception and the low-level feature of image to trian support vector machines. Experimental results show that it achieves significantly higher search accuracy after just three or four rounds of relevance feedback.
基于支持向量机自学习的商标检索方法
在图像检索中,相关反馈是一种很好的处理语义缺口的方法。本文提出了一种利用支持向量机对商标检索进行有效关联反馈的方法。该算法根据测试结果对已经训练好的支持向量机进行调整。选择符合人类视觉感知的田村纹理特征和图像的底层特征进行支持向量机训练。实验结果表明,仅经过3轮或4轮的相关反馈,该算法的搜索准确率就有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信