Semantic map partitioning in indoor environments using regional analysis

Carlos Nieto-Granda, J. Rogers, A. J. Trevor, H. Christensen
{"title":"Semantic map partitioning in indoor environments using regional analysis","authors":"Carlos Nieto-Granda, J. Rogers, A. J. Trevor, H. Christensen","doi":"10.1109/IROS.2010.5650575","DOIUrl":null,"url":null,"abstract":"Classification of spatial regions based on semantic information in an indoor environment enables robot tasks such as navigation or mobile manipulation to be spatially aware. The availability of contextual information can significantly simplify operation of a mobile platform. We present methods for automated recognition and classification of spaces into separate semantic regions and use of such information for generation of a topological map of an environment. The association of semantic labels with spatial regions is based on Human Augmented Mapping. The methods presented in this paper are evaluated both in simulation and on real data acquired from an office environment.","PeriodicalId":420658,"journal":{"name":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2010.5650575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

Classification of spatial regions based on semantic information in an indoor environment enables robot tasks such as navigation or mobile manipulation to be spatially aware. The availability of contextual information can significantly simplify operation of a mobile platform. We present methods for automated recognition and classification of spaces into separate semantic regions and use of such information for generation of a topological map of an environment. The association of semantic labels with spatial regions is based on Human Augmented Mapping. The methods presented in this paper are evaluated both in simulation and on real data acquired from an office environment.
基于区域分析的室内环境语义地图划分
基于室内环境中语义信息的空间区域分类使机器人任务(如导航或移动操作)具有空间意识。上下文信息的可用性可以大大简化移动平台的操作。我们提出了自动识别和将空间分类为单独的语义区域的方法,并使用这些信息来生成环境的拓扑地图。语义标签与空间区域的关联是基于人类增强映射的。本文提出的方法在仿真和从办公环境中获得的实际数据上进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信