Grey prediction of China grain production with TEI@I methodology

Qiting Chen, Chao Zhang
{"title":"Grey prediction of China grain production with TEI@I methodology","authors":"Qiting Chen, Chao Zhang","doi":"10.1109/GSIS.2015.7301864","DOIUrl":null,"url":null,"abstract":"This paper adopts a novel methodology to predict China's grain production. Using a grey model to capture the main trend, this paper establishes a modified model of BP neural networks and then analyzes the irregular events and its influencing direction and degree with Delphi methods. By testing the validity of the final model, the result shows an encouraging conclusion that the model is effective and China's grain production will continue to increase in the next six years.","PeriodicalId":246110,"journal":{"name":"2015 IEEE International Conference on Grey Systems and Intelligent Services (GSIS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Grey Systems and Intelligent Services (GSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSIS.2015.7301864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper adopts a novel methodology to predict China's grain production. Using a grey model to capture the main trend, this paper establishes a modified model of BP neural networks and then analyzes the irregular events and its influencing direction and degree with Delphi methods. By testing the validity of the final model, the result shows an encouraging conclusion that the model is effective and China's grain production will continue to increase in the next six years.
中国粮食生产的TEI@I灰色预测方法
本文采用一种新颖的方法对中国粮食产量进行预测。利用灰色模型捕捉主要趋势,建立了改进的BP神经网络模型,并用德尔菲法分析了不规则事件及其影响方向和程度。通过对最终模型的有效性检验,得出了一个令人鼓舞的结论,即模型是有效的,未来6年中国粮食产量将继续增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信