Predicting Solar Irradiance With SVM Regression

Vivek Palaniappan
{"title":"Predicting Solar Irradiance With SVM Regression","authors":"Vivek Palaniappan","doi":"10.2139/ssrn.3302155","DOIUrl":null,"url":null,"abstract":"This paper describes using manifold learning for dimensionality reduction along with support vector machines for regression to predict the solar irradiance given historical weather data. A critical struggle in the renewable energy industry is combining the unpredictable renewable energy sources with pre-existing energy sources in an efficient way to minimize cost and pollution. By using machine learning, we are able to achieve high accuracy in prediction which can be very useful in controlling the output of fossil fuel output, yet maintaining a constant flow of energy to consumers. The synchronization of solar and non-renewable energy is explored from both a deterministic and stochastic approach, with the stochastic formulation showing promise.","PeriodicalId":136014,"journal":{"name":"Sustainable Technology eJournal","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Technology eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3302155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes using manifold learning for dimensionality reduction along with support vector machines for regression to predict the solar irradiance given historical weather data. A critical struggle in the renewable energy industry is combining the unpredictable renewable energy sources with pre-existing energy sources in an efficient way to minimize cost and pollution. By using machine learning, we are able to achieve high accuracy in prediction which can be very useful in controlling the output of fossil fuel output, yet maintaining a constant flow of energy to consumers. The synchronization of solar and non-renewable energy is explored from both a deterministic and stochastic approach, with the stochastic formulation showing promise.
用SVM回归预测太阳辐照度
本文描述了使用流形学习降维和支持向量机回归来预测给定历史天气数据的太阳辐照度。将不可预测的可再生能源与现有的能源有效地结合起来,以最大限度地降低成本和污染,是可再生能源行业面临的一个关键问题。通过使用机器学习,我们能够实现高精度的预测,这对于控制化石燃料的产量非常有用,同时保持源源不断的能源流向消费者。从确定性和随机两种方法探讨了太阳能和不可再生能源的同步,随机公式显示出希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信