Source separation in images via MRFS with variational approximation

K. Kayabol, B. Sankur, E. Kuruoğlu
{"title":"Source separation in images via MRFS with variational approximation","authors":"K. Kayabol, B. Sankur, E. Kuruoğlu","doi":"10.5281/ZENODO.40291","DOIUrl":null,"url":null,"abstract":"The problem of source separation in two dimensions is studied in this paper. The problem is formulated in the Bayesian framework. The sources are modelled as MRFs to accommodate for the spatially correlated structure of the sources, which we exploit for separation in 2D. The difficulty of working analytically with general Gibbs distributions is overcome by using an approximate density. In this work, the Gibbs distribution is modelled by the product of directional Gaussians. The sources are estimated by Maximum-a-Posteriori estimation using the approximate density as the prior. At each iteration of the MAP estimation, an annealing schedule is used for approximate density. This annealing schedule aids the algorithm to converge the global extremum. The mixing matrix is found by Maximum Likelihood estimation.","PeriodicalId":176384,"journal":{"name":"2007 15th European Signal Processing Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 15th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.40291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The problem of source separation in two dimensions is studied in this paper. The problem is formulated in the Bayesian framework. The sources are modelled as MRFs to accommodate for the spatially correlated structure of the sources, which we exploit for separation in 2D. The difficulty of working analytically with general Gibbs distributions is overcome by using an approximate density. In this work, the Gibbs distribution is modelled by the product of directional Gaussians. The sources are estimated by Maximum-a-Posteriori estimation using the approximate density as the prior. At each iteration of the MAP estimation, an annealing schedule is used for approximate density. This annealing schedule aids the algorithm to converge the global extremum. The mixing matrix is found by Maximum Likelihood estimation.
基于变分逼近的MRFS图像源分离
本文研究了二维源分离问题。这个问题是在贝叶斯框架中表述出来的。源被建模为mrf,以适应源的空间相关结构,我们利用它在2D中分离。用近似密度克服了用一般吉布斯分布解析工作的困难。在这项工作中,吉布斯分布是由方向性高斯分布的乘积来建模的。源的估计采用最大后验估计,使用近似密度作为先验。在MAP估计的每次迭代中,使用退火计划来近似密度。这种退火调度有助于算法收敛全局极值。通过极大似然估计找到混合矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信