David Fernández-Chapa, Jesica M Ramírez-Villalobos, L. Galán-Wong
{"title":"Toxic Potential ofBacillus thuringiensis: An Overview","authors":"David Fernández-Chapa, Jesica M Ramírez-Villalobos, L. Galán-Wong","doi":"10.5772/INTECHOPEN.85756","DOIUrl":null,"url":null,"abstract":"The toxins of Bacillus thuringiensis (Bt) have shown great potential in the control of harmful insects affecting human health and agriculture, used as the main biological agent for the formulation of bioinsecticides due to its specificity to target different insects’ orders. This has led Bt-based products to become the best-selling biological insecticides in the world since the genes encoding insecticidal proteins have been successfully used in novel insecticidal formulation, genetically engineered (GE) crops, and development of transgenic rice that produce insecticidal toxins derived from Bacillus thuringiensis. It has been proven that insecticidal activity of Bt protein crystals can prolong their toxicity in shelf life or field under specific conditions, and this can improve the use of special strains and formulations to control insect vectors of diseases. Bt toxins have shown well-documented toxicity against lepidopterans, coleopterans, hemipterans, dipterans, nematodes, Rhabditida and human cancer cells of various origins. These crystal toxins may be responsible for other novel biological properties suggesting a pluripotential nature with different specificities.","PeriodicalId":394773,"journal":{"name":"Protecting Rice Grains in the Post-Genomic Era","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protecting Rice Grains in the Post-Genomic Era","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.85756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The toxins of Bacillus thuringiensis (Bt) have shown great potential in the control of harmful insects affecting human health and agriculture, used as the main biological agent for the formulation of bioinsecticides due to its specificity to target different insects’ orders. This has led Bt-based products to become the best-selling biological insecticides in the world since the genes encoding insecticidal proteins have been successfully used in novel insecticidal formulation, genetically engineered (GE) crops, and development of transgenic rice that produce insecticidal toxins derived from Bacillus thuringiensis. It has been proven that insecticidal activity of Bt protein crystals can prolong their toxicity in shelf life or field under specific conditions, and this can improve the use of special strains and formulations to control insect vectors of diseases. Bt toxins have shown well-documented toxicity against lepidopterans, coleopterans, hemipterans, dipterans, nematodes, Rhabditida and human cancer cells of various origins. These crystal toxins may be responsible for other novel biological properties suggesting a pluripotential nature with different specificities.