Dan Feldman, Stephanie Gil, Ross A. Knepper, Brian J. Julian, D. Rus
{"title":"K-robots clustering of moving sensors using coresets","authors":"Dan Feldman, Stephanie Gil, Ross A. Knepper, Brian J. Julian, D. Rus","doi":"10.1109/ICRA.2013.6630677","DOIUrl":null,"url":null,"abstract":"We present an approach to position k servers (e.g. mobile robots) to provide a service to n independently moving clients; for example, in mobile ad-hoc networking applications where inter-agent distances need to be minimized, connectivity constraints exist between servers, and no a priori knowledge of the clients' motion can be assumed. Our primary contribution is an algorithm to compute and maintain a small representative set, called a kinematic coreset, of the n moving clients.We prove that, in any given moment, the maximum distance between the clients and any set of k servers is approximated by the coreset up to a factor of (1 ± ε), where ε > 0 is an arbitrarily small constant. We prove that both the size of our coreset and its update time is polynomial in k log(n)/ε. Although our optimization problem is NP-hard (i.e., takes time exponential in the number of servers to solve), solving it on the small coreset instead of the original clients results in a tractable controller. The approach is validated in a small scale hardware experiment using robot servers and human clients, and in a large scale numerical simulation using thousands of clients.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6630677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We present an approach to position k servers (e.g. mobile robots) to provide a service to n independently moving clients; for example, in mobile ad-hoc networking applications where inter-agent distances need to be minimized, connectivity constraints exist between servers, and no a priori knowledge of the clients' motion can be assumed. Our primary contribution is an algorithm to compute and maintain a small representative set, called a kinematic coreset, of the n moving clients.We prove that, in any given moment, the maximum distance between the clients and any set of k servers is approximated by the coreset up to a factor of (1 ± ε), where ε > 0 is an arbitrarily small constant. We prove that both the size of our coreset and its update time is polynomial in k log(n)/ε. Although our optimization problem is NP-hard (i.e., takes time exponential in the number of servers to solve), solving it on the small coreset instead of the original clients results in a tractable controller. The approach is validated in a small scale hardware experiment using robot servers and human clients, and in a large scale numerical simulation using thousands of clients.