A Multi-layered Friend Recommendation System on Twitter

Fufeng Zheng, Long Ma
{"title":"A Multi-layered Friend Recommendation System on Twitter","authors":"Fufeng Zheng, Long Ma","doi":"10.1145/3474963.3475848","DOIUrl":null,"url":null,"abstract":"Nowadays, the number of active users on social media is growing. Therefore, the friend recommendation plays a critical role in building a substantial social network. Compared with previous recommendation systems in social networks, our research is not focused on a particular direction (e.g., geographic location, tag) but introduces another field of social media, common interests among users. In the proposed recommendation system on Twitter, the common interests between two users are determined by four features retrieved from a Twitter user account: user introduction, geographic distance between the target user and candidate users, keywords in tweets, and hashtags of tweets. These features are utilized to calculate the similarities between the candidate users and the target user. In the end, a candidate user with a high similarity score is recommended to the target user.","PeriodicalId":277800,"journal":{"name":"Proceedings of the 13th International Conference on Computer Modeling and Simulation","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474963.3475848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the number of active users on social media is growing. Therefore, the friend recommendation plays a critical role in building a substantial social network. Compared with previous recommendation systems in social networks, our research is not focused on a particular direction (e.g., geographic location, tag) but introduces another field of social media, common interests among users. In the proposed recommendation system on Twitter, the common interests between two users are determined by four features retrieved from a Twitter user account: user introduction, geographic distance between the target user and candidate users, keywords in tweets, and hashtags of tweets. These features are utilized to calculate the similarities between the candidate users and the target user. In the end, a candidate user with a high similarity score is recommended to the target user.
基于Twitter的多层次好友推荐系统
如今,社交媒体上的活跃用户数量正在增长。因此,朋友推荐在建立一个坚实的社交网络中起着至关重要的作用。与之前的社交网络推荐系统相比,我们的研究并没有专注于某个特定的方向(例如地理位置、标签),而是引入了社交媒体的另一个领域,即用户之间的共同兴趣。在本文提出的Twitter推荐系统中,两个用户之间的共同兴趣是通过从Twitter用户账户中检索到的四个特征来确定的:用户介绍、目标用户与候选用户的地理距离、tweets中的关键词和tweets的hashtag。利用这些特征计算候选用户和目标用户之间的相似度。最后,向目标用户推荐具有高相似度分数的候选用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信