Hybrid Algorithms For Maximum Likelihood And Maximum A Posterior Sequence Estimation

R. Mahony, G. D. Brushe, J. Moore
{"title":"Hybrid Algorithms For Maximum Likelihood And Maximum A Posterior Sequence Estimation","authors":"R. Mahony, G. D. Brushe, J. Moore","doi":"10.1109/ISSPA.1996.614973","DOIUrl":null,"url":null,"abstract":"This paper presents two methods of processing data generated by a hidden Markov model (HMM) such that the resulting state estimates are related to both the maximum likelihood (ML) estimates (generated by the Viterbi algorithm) and maximum a posreriori (MAP) estimates (generated by the HMM forwardbackward algorithm). Both algorithms contain a tuneable parameter which selects the tendency of the processing to replicate ML or MAP estimates. In the limit the algorithms reproduce the ML and MAP estimates exactly.","PeriodicalId":359344,"journal":{"name":"Fourth International Symposium on Signal Processing and Its Applications","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Symposium on Signal Processing and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.1996.614973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents two methods of processing data generated by a hidden Markov model (HMM) such that the resulting state estimates are related to both the maximum likelihood (ML) estimates (generated by the Viterbi algorithm) and maximum a posreriori (MAP) estimates (generated by the HMM forwardbackward algorithm). Both algorithms contain a tuneable parameter which selects the tendency of the processing to replicate ML or MAP estimates. In the limit the algorithms reproduce the ML and MAP estimates exactly.
极大似然和极大A后验序列估计的混合算法
本文提出了两种处理隐马尔可夫模型(HMM)生成的数据的方法,使得结果状态估计与最大似然(ML)估计(由Viterbi算法生成)和最大先验(MAP)估计(由HMM前向向后算法生成)相关。这两种算法都包含一个可调参数,该参数选择处理的趋势来复制ML或MAP估计。在极限情况下,算法精确地再现了ML和MAP的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信