{"title":"Input space selective fuzzification in intuitionistic semi fuzzy-neural network","authors":"M. Terziyska, Y. Todorov, M. Olteanu","doi":"10.1109/ECAI.2016.7861093","DOIUrl":null,"url":null,"abstract":"In this paper, the influence of the selective fuzzification of the input space in Intuitionistic Semi-Fuzzy Neural Network (ISFNN) is investigated. The ISFNN represents a structure modification of the classical fuzzy-neural approach where selective fuzzification as a means to reduce the number of the generated fuzzy rules is proposed, thus expected to reduce the number of the associated learning parameters and to achieve a degree of computational simplicity. On the other hand, the potentials of the network are supplemented by intuitionistic fuzzy logic, in order to handle uncertain data variations. As a learning procedure for the proposed structure, a two-step gradient descent algorithm is employed. To investigate the influence of input space fuzzificaton, several test experiments in modeling of a two benchmark chaotic systems — Mackey-Glass and Rossler chaotic time series are made.","PeriodicalId":122809,"journal":{"name":"2016 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECAI.2016.7861093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, the influence of the selective fuzzification of the input space in Intuitionistic Semi-Fuzzy Neural Network (ISFNN) is investigated. The ISFNN represents a structure modification of the classical fuzzy-neural approach where selective fuzzification as a means to reduce the number of the generated fuzzy rules is proposed, thus expected to reduce the number of the associated learning parameters and to achieve a degree of computational simplicity. On the other hand, the potentials of the network are supplemented by intuitionistic fuzzy logic, in order to handle uncertain data variations. As a learning procedure for the proposed structure, a two-step gradient descent algorithm is employed. To investigate the influence of input space fuzzificaton, several test experiments in modeling of a two benchmark chaotic systems — Mackey-Glass and Rossler chaotic time series are made.