O. Weber, E. Josse, F. Andrieu, A. Cros, E. Richard, P. Perreau, E. Baylac, N. Degors, C. Gallon, E. Perrin, S. Chhun, E. Petitprez, S. DelMedico, J. Simon, G. Druais, S. Lasserre, J. Mazurier, N. Guillot, É. Bernard, R. Bianchini, L. Parmigiani, X. Gérard, C. Pribat, O. Gourhant, F. Abbate, C. Gaumer, V. Beugin, P. Gouraud, P. Maury, S. Lagrasta, D. Barge, N. Loubet, R. Beneyton, D. Benoit, S. Zoll, J. Chapon, L. Babaud, M. Bidaud, M. Grégoire, C. Monget, B. Le-Gratiet, P. Brun, M. Mellier, A. Pofelski, L. Clément, R. Bingert, S. Puget, J. Kruck, D. Hoguet, P. Scheer, T. Poiroux, J. Manceau, M. Rafik, D. Rideau, M. Jaud, J. Lacord, F. Monsieur, L. Grenouillet, M. Vinet, Q. Liu, B. Doris, M. Celik, S. Fetterolf, O. Faynot, M. Haond
{"title":"14nm FDSOI technology for high speed and energy efficient applications","authors":"O. Weber, E. Josse, F. Andrieu, A. Cros, E. Richard, P. Perreau, E. Baylac, N. Degors, C. Gallon, E. Perrin, S. Chhun, E. Petitprez, S. DelMedico, J. Simon, G. Druais, S. Lasserre, J. Mazurier, N. Guillot, É. Bernard, R. Bianchini, L. Parmigiani, X. Gérard, C. Pribat, O. Gourhant, F. Abbate, C. Gaumer, V. Beugin, P. Gouraud, P. Maury, S. Lagrasta, D. Barge, N. Loubet, R. Beneyton, D. Benoit, S. Zoll, J. Chapon, L. Babaud, M. Bidaud, M. Grégoire, C. Monget, B. Le-Gratiet, P. Brun, M. Mellier, A. Pofelski, L. Clément, R. Bingert, S. Puget, J. Kruck, D. Hoguet, P. Scheer, T. Poiroux, J. Manceau, M. Rafik, D. Rideau, M. Jaud, J. Lacord, F. Monsieur, L. Grenouillet, M. Vinet, Q. Liu, B. Doris, M. Celik, S. Fetterolf, O. Faynot, M. Haond","doi":"10.1109/VLSIT.2014.6894343","DOIUrl":null,"url":null,"abstract":"This paper presents a 14nm technology designed for high speed and energy efficient applications using strain-engineered FDSOI transistors. Compared to the 28nm FDSOI technology, this 14nm FDSOI technology provides 0.55× area scaling and delivers a 30% speed boost at the same power, or a 55% power reduction at the same speed, due to an increase in drive current and low gate-to-drain capacitance. Using forward back bias (FBB) we experimentally demonstrate that the power efficiency of this technology provides an additional 40% dynamic power reduction for ring oscillators working at the same speed. Finally, a full single-port SRAM offering is reported, including an 0.081°m2 high-density bitcell and two 0.090°m2 bitcell flavors used to address high performance and low leakage-low Vmin requirements.","PeriodicalId":105807,"journal":{"name":"2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2014.6894343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85
Abstract
This paper presents a 14nm technology designed for high speed and energy efficient applications using strain-engineered FDSOI transistors. Compared to the 28nm FDSOI technology, this 14nm FDSOI technology provides 0.55× area scaling and delivers a 30% speed boost at the same power, or a 55% power reduction at the same speed, due to an increase in drive current and low gate-to-drain capacitance. Using forward back bias (FBB) we experimentally demonstrate that the power efficiency of this technology provides an additional 40% dynamic power reduction for ring oscillators working at the same speed. Finally, a full single-port SRAM offering is reported, including an 0.081°m2 high-density bitcell and two 0.090°m2 bitcell flavors used to address high performance and low leakage-low Vmin requirements.