{"title":"Markerless Suture Needle Tracking From A Robotic Endoscope Based On Deep Learning","authors":"Yiwei Jiang, Haoying Zhou, G. Fischer","doi":"10.1109/ISMR57123.2023.10130199","DOIUrl":null,"url":null,"abstract":"Advancements in robot-assisted surgery have been rapidly growing since two decades ago. More recently, the automation of robotic surgical tasks has become the focus of research. In this area, the detection and tracking of a surgical tool are crucial for an autonomous system to plan and perform a procedure. For example, knowing the position and posture of a needle is a prerequisite for an automatic suturing system to grasp it and perform suturing tasks. In this paper, we proposed a novel method, based on Deep Learning and Point-to-point Registration, to track the 6 degrees of freedom (DOF) pose of a metal suture needle from a robotic endoscope (an Endoscopic Camera Manipulator from the da Vinci Robotic Surgical Systems), without the help of any marker. The proposed approach was implemented and evaluated in a standard simulated surgical environment provided by the 2021–2022 AccelNet Surgical Robotics Challenge, thus demonstrates the potential to be translated into a real-world scenario. A customized dataset containing 836 images collected from the simulated scene with ground truth of poses and key points information was constructed to train the neural network model. The best pipeline achieved an average position error of 1.76 mm while the average orientation error is 8.55 degrees, and it can run up to 10 Hz on a PC.","PeriodicalId":276757,"journal":{"name":"2023 International Symposium on Medical Robotics (ISMR)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Symposium on Medical Robotics (ISMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMR57123.2023.10130199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in robot-assisted surgery have been rapidly growing since two decades ago. More recently, the automation of robotic surgical tasks has become the focus of research. In this area, the detection and tracking of a surgical tool are crucial for an autonomous system to plan and perform a procedure. For example, knowing the position and posture of a needle is a prerequisite for an automatic suturing system to grasp it and perform suturing tasks. In this paper, we proposed a novel method, based on Deep Learning and Point-to-point Registration, to track the 6 degrees of freedom (DOF) pose of a metal suture needle from a robotic endoscope (an Endoscopic Camera Manipulator from the da Vinci Robotic Surgical Systems), without the help of any marker. The proposed approach was implemented and evaluated in a standard simulated surgical environment provided by the 2021–2022 AccelNet Surgical Robotics Challenge, thus demonstrates the potential to be translated into a real-world scenario. A customized dataset containing 836 images collected from the simulated scene with ground truth of poses and key points information was constructed to train the neural network model. The best pipeline achieved an average position error of 1.76 mm while the average orientation error is 8.55 degrees, and it can run up to 10 Hz on a PC.