Ontology for Transcription of ATC Speech Commands of SESAR 2020 Solution PJ.16-04

H. Helmke, M. Slotty, Michael Poiger, Damián Ferrer Herrer, O. Ohneiser, Nathan Vink, Aneta Cerna, Petri Hartikainen, B. Josefsson, David Langr, R. Lasheras, Gabriela Marin, Odd Georg Mevatne, Sylvain Moos, Mats N. Nilsson, Mario Boyero Pérez
{"title":"Ontology for Transcription of ATC Speech Commands of SESAR 2020 Solution PJ.16-04","authors":"H. Helmke, M. Slotty, Michael Poiger, Damián Ferrer Herrer, O. Ohneiser, Nathan Vink, Aneta Cerna, Petri Hartikainen, B. Josefsson, David Langr, R. Lasheras, Gabriela Marin, Odd Georg Mevatne, Sylvain Moos, Mats N. Nilsson, Mario Boyero Pérez","doi":"10.1109/DASC.2018.8569238","DOIUrl":null,"url":null,"abstract":"Nowadays Automatic Speech Recognition (ASR) applications are increasingly successful in the air traffic (ATC) domain. Paramount to achieving this is collecting enough data for speech recognition model training. Thousands of hours of ATC communication are recorded every day. However, the transcription of these data sets is resource intense, i.e. writing down the sequence of spoken words, and more importantly, interpreting the relevant semantics. Many different approaches including CPDLC (Controller Pilot Data Link Communications) currently exist in the ATC community for command transcription, a fact that e.g. complicates exchange of transcriptions. The partners of the SESAR funded solution PJ.16-04 are currently developing on a common ontology for transcription of controller-pilot communications, which will harmonize integration of ASR into controller working positions. The resulting ontology is presented in this paper.","PeriodicalId":405724,"journal":{"name":"2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2018.8569238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Nowadays Automatic Speech Recognition (ASR) applications are increasingly successful in the air traffic (ATC) domain. Paramount to achieving this is collecting enough data for speech recognition model training. Thousands of hours of ATC communication are recorded every day. However, the transcription of these data sets is resource intense, i.e. writing down the sequence of spoken words, and more importantly, interpreting the relevant semantics. Many different approaches including CPDLC (Controller Pilot Data Link Communications) currently exist in the ATC community for command transcription, a fact that e.g. complicates exchange of transcriptions. The partners of the SESAR funded solution PJ.16-04 are currently developing on a common ontology for transcription of controller-pilot communications, which will harmonize integration of ASR into controller working positions. The resulting ontology is presented in this paper.
SESAR 2020 Solution ATC语音命令转录本体[j] .16-04
目前,自动语音识别(ASR)在空中交通领域的应用越来越成功。要做到这一点,最重要的是为语音识别模型训练收集足够的数据。每天都有数千小时的空中交通管制通讯记录。然而,这些数据集的转录是资源密集型的,即写下口语单词的顺序,更重要的是,解释相关的语义。ATC社区目前存在许多不同的方法,包括CPDLC(控制器导频数据链路通信),用于命令转录,这一事实使转录交换变得复杂。由SESAR资助的解决方案PJ.16-04的合作伙伴目前正在开发一种通用本体,用于控制器-导航通信的转录,这将协调ASR与控制器工作位置的集成。本文给出了生成的本体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信