Hardware-accelerated spike train generation for neuromorphic image and video processing

T. Iakymchuk, A. Rosado-Muñoz, M. Bataller-Mompeán, J. Guerrero-Martinez, J. V. Francés-Víllora, M. Węgrzyn, M. Adamski
{"title":"Hardware-accelerated spike train generation for neuromorphic image and video processing","authors":"T. Iakymchuk, A. Rosado-Muñoz, M. Bataller-Mompeán, J. Guerrero-Martinez, J. V. Francés-Víllora, M. Węgrzyn, M. Adamski","doi":"10.1109/SPL.2014.7002206","DOIUrl":null,"url":null,"abstract":"Recent studies concerning Spiking Neural Networks show that they are a powerful tool for multiple applications as pattern recognition, image tracking, and detection tasks. The basic functional properties of SNN reside in the use of spike information encoding as the neurons are specifically designed and trained using spike trains. We present a novel and efficient frequency encoding algorithm with Gabor-like receptive fields using probabilistic methods and targeted to FPGA for online pro-cessing. The proposed encoding is versatile, modular and, when applied to images, it is able to perform simple image transforms as edge detection, spot detection or removal, and Gabor-like filtering without any further computation requirements. The algorithm is implemented in FPGA and ready to be used in embedded systems, being capable of processing images or video stream up to 40 megapixel per second per single core. Results show an improvement in hardware occupation and encoding speed up to 2.5x over existing state of the art implementations.","PeriodicalId":320882,"journal":{"name":"2014 IX Southern Conference on Programmable Logic (SPL)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IX Southern Conference on Programmable Logic (SPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPL.2014.7002206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Recent studies concerning Spiking Neural Networks show that they are a powerful tool for multiple applications as pattern recognition, image tracking, and detection tasks. The basic functional properties of SNN reside in the use of spike information encoding as the neurons are specifically designed and trained using spike trains. We present a novel and efficient frequency encoding algorithm with Gabor-like receptive fields using probabilistic methods and targeted to FPGA for online pro-cessing. The proposed encoding is versatile, modular and, when applied to images, it is able to perform simple image transforms as edge detection, spot detection or removal, and Gabor-like filtering without any further computation requirements. The algorithm is implemented in FPGA and ready to be used in embedded systems, being capable of processing images or video stream up to 40 megapixel per second per single core. Results show an improvement in hardware occupation and encoding speed up to 2.5x over existing state of the art implementations.
神经形态图像和视频处理的硬件加速尖峰序列生成
最近关于脉冲神经网络的研究表明,它们是一种强大的工具,可用于模式识别、图像跟踪和检测任务等多种应用。SNN的基本功能特性在于使用尖峰信息编码,因为神经元是专门使用尖峰序列设计和训练的。本文提出了一种新颖高效的基于类gabor接受域的频率编码算法,并针对FPGA进行了在线处理。所提出的编码是通用的,模块化的,当应用于图像时,它能够执行简单的图像变换,如边缘检测,斑点检测或去除,以及类似gabor的滤波,而无需任何进一步的计算要求。该算法在FPGA中实现,可用于嵌入式系统,每核处理图像或视频流的速度可达每秒4000万像素。结果表明,在硬件占用和编码速度方面比现有的技术实现提高了2.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信