Cécile Baritel-Ruet, François Dupressoir, Pierre-Alain Fouque, B. Grégoire
{"title":"Formal Security Proof of CMAC and Its Variants","authors":"Cécile Baritel-Ruet, François Dupressoir, Pierre-Alain Fouque, B. Grégoire","doi":"10.1109/CSF.2018.00014","DOIUrl":null,"url":null,"abstract":"The CMAC standard, when initially proposed by Iwata and Kurosawa as OMAC1, was equipped with a complex game-based security proof. Following recent advances in formal verification for game-based security proofs, we formalize a proof of unforgeability for CMAC in EasyCrypt. A side effects of this proof are improvements of EasyCrypt libraries. This formal proof obtains security bounds very similar to Iwata and Kurosawa’s for CMAC, but also proves secure a certain number of intermediate constructions of independent interest, including ECBC, FCBC and XCBC. This work represents one more step in the direction of obtaining a reliable set of independently verifiable evidence for the security of international cryptographic standards.","PeriodicalId":417032,"journal":{"name":"2018 IEEE 31st Computer Security Foundations Symposium (CSF)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 31st Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2018.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The CMAC standard, when initially proposed by Iwata and Kurosawa as OMAC1, was equipped with a complex game-based security proof. Following recent advances in formal verification for game-based security proofs, we formalize a proof of unforgeability for CMAC in EasyCrypt. A side effects of this proof are improvements of EasyCrypt libraries. This formal proof obtains security bounds very similar to Iwata and Kurosawa’s for CMAC, but also proves secure a certain number of intermediate constructions of independent interest, including ECBC, FCBC and XCBC. This work represents one more step in the direction of obtaining a reliable set of independently verifiable evidence for the security of international cryptographic standards.