Adaptive LASSO based on joint M-estimation of regression and scale

E. Ollila
{"title":"Adaptive LASSO based on joint M-estimation of regression and scale","authors":"E. Ollila","doi":"10.1109/EUSIPCO.2016.7760637","DOIUrl":null,"url":null,"abstract":"The adaptive Lasso (Least Absolute Shrinkage and Selection Operator) obtains oracle variable selection property by using cleverly chosen adaptive weights for regression coefficients in the ℓ1-penalty. In this paper, in the spirit of M-estimation of regression, we propose a class of adaptive M-Lasso estimates of regression and scale as solutions to generalized zero subgradient equations. The defining estimating equations depend on a differentiable convex loss function and choosing the LS-loss function yields the standard adaptive Lasso estimate and the associated scale statistic. An efficient algorithm, a generalization of the cyclic coordinate descent algorithm, is developed for computing the proposed M-Lasso estimates. We also propose adaptive M-Lasso estimate of regression with preliminary scale estimate that uses a highly-robust bounded loss function. A unique feature of the paper is that we consider complex-valued measurements and regression parameter. Consistent variable selection property of the adaptive M-Lasso estimates are illustrated with a simulation study.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The adaptive Lasso (Least Absolute Shrinkage and Selection Operator) obtains oracle variable selection property by using cleverly chosen adaptive weights for regression coefficients in the ℓ1-penalty. In this paper, in the spirit of M-estimation of regression, we propose a class of adaptive M-Lasso estimates of regression and scale as solutions to generalized zero subgradient equations. The defining estimating equations depend on a differentiable convex loss function and choosing the LS-loss function yields the standard adaptive Lasso estimate and the associated scale statistic. An efficient algorithm, a generalization of the cyclic coordinate descent algorithm, is developed for computing the proposed M-Lasso estimates. We also propose adaptive M-Lasso estimate of regression with preliminary scale estimate that uses a highly-robust bounded loss function. A unique feature of the paper is that we consider complex-valued measurements and regression parameter. Consistent variable selection property of the adaptive M-Lasso estimates are illustrated with a simulation study.
基于回归和尺度联合m估计的自适应LASSO
自适应Lasso(最小绝对收缩和选择算子)通过巧妙地选择回归系数的自适应权值来获得oracle变量的选择特性。本文本着回归的m估计的精神,提出了一类自适应回归和尺度的M-Lasso估计作为广义零次梯度方程的解。定义估计方程依赖于一个可微的凸损失函数,选择ls -损失函数得到标准的自适应Lasso估计和相关的尺度统计量。在循环坐标下降算法的基础上,提出了一种计算M-Lasso估计的有效算法。我们还提出了自适应M-Lasso估计回归与初步规模估计,使用高鲁棒有界损失函数。本文的一个独特之处在于我们考虑了复值测量和回归参数。通过仿真研究说明了自适应M-Lasso估计的一致变量选择特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信