B. Saha, S. Frégonèse, S. Panda, A. Chakravorty, D. Céli, T. Zimmer
{"title":"Collector-substrate modeling of SiGe HBTs up to THz range","authors":"B. Saha, S. Frégonèse, S. Panda, A. Chakravorty, D. Céli, T. Zimmer","doi":"10.1109/BCICTS45179.2019.8972745","DOIUrl":null,"url":null,"abstract":"The undesired behavior of the substrate significantly affects the output impedance of the device; hence degrades circuit performance mainly in the high frequency regime. Therefore, for high-speed and RF circuits, collector-substrate modeling has to be sufficiently accurate. In this paper, an improved collector-substrate equivalent circuit model is proposed. The circuit model elements are physics based and are calculated from technological data. The validity of the equivalent circuit has been verified by on-wafer measurements of an SiGe HBT fabricated in B55 technology up to 330 GHz, the highest frequency reported so far for collector-substrate modeling. The proposed substrate network can be considered as an extension of the latest large-signal HICUM model (L2v2.4).","PeriodicalId":243314,"journal":{"name":"2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCICTS45179.2019.8972745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The undesired behavior of the substrate significantly affects the output impedance of the device; hence degrades circuit performance mainly in the high frequency regime. Therefore, for high-speed and RF circuits, collector-substrate modeling has to be sufficiently accurate. In this paper, an improved collector-substrate equivalent circuit model is proposed. The circuit model elements are physics based and are calculated from technological data. The validity of the equivalent circuit has been verified by on-wafer measurements of an SiGe HBT fabricated in B55 technology up to 330 GHz, the highest frequency reported so far for collector-substrate modeling. The proposed substrate network can be considered as an extension of the latest large-signal HICUM model (L2v2.4).