Richard Beyer, P. Freere, T. V. van Niekerk, Ertugul Sönmez
{"title":"Design of a Universal Charger for a Light Electric Vehicle with Effect of an RCD Snubber on Peak Current Control","authors":"Richard Beyer, P. Freere, T. V. van Niekerk, Ertugul Sönmez","doi":"10.1109/CEECT50755.2020.9298611","DOIUrl":null,"url":null,"abstract":"The design process for a single phase, smart, universal charger for light electric vehicles, is presented. With a step up, power factor correction circuit, followed by a phase shifted, full bridge converter, with synchronous rectification on the secondary side. Due to the resistor-capacitor-diode snubber on the secondary side, the current peak at the start of power transfer, leads to false triggering during light load control with peak current mode control. The solution developed for light loads, is to change from peak current control to voltage control. This is achieved by limiting the maximum phase shift, instead of changing the reference value. For the power factor correction stage, measured and calculated efficiencies are compared as a function of the output power. The voltage and current waveforms are shown for the power factor correction circuit, and for the phase shifted bridge, the measured current waveform is compared with simulation.","PeriodicalId":115174,"journal":{"name":"2020 International Conference on Electrical Engineering and Control Technologies (CEECT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Electrical Engineering and Control Technologies (CEECT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEECT50755.2020.9298611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The design process for a single phase, smart, universal charger for light electric vehicles, is presented. With a step up, power factor correction circuit, followed by a phase shifted, full bridge converter, with synchronous rectification on the secondary side. Due to the resistor-capacitor-diode snubber on the secondary side, the current peak at the start of power transfer, leads to false triggering during light load control with peak current mode control. The solution developed for light loads, is to change from peak current control to voltage control. This is achieved by limiting the maximum phase shift, instead of changing the reference value. For the power factor correction stage, measured and calculated efficiencies are compared as a function of the output power. The voltage and current waveforms are shown for the power factor correction circuit, and for the phase shifted bridge, the measured current waveform is compared with simulation.