Phoebe Liu, Dylan F. Glas, T. Kanda, H. Ishiguro, N. Hagita
{"title":"How to train your robot - teaching service robots to reproduce human social behavior","authors":"Phoebe Liu, Dylan F. Glas, T. Kanda, H. Ishiguro, N. Hagita","doi":"10.1109/ROMAN.2014.6926377","DOIUrl":null,"url":null,"abstract":"Developing interactive behaviors for social robots presents a number of challenges. It is difficult to interpret the meaning of the details of people's behavior, particularly non-verbal behavior like body positioning, but yet a social robot needs to be contingent to such subtle behaviors. It needs to generate utterances and non-verbal behavior with good timing and coordination. The rules for such behavior are often based on implicit knowledge and thus difficult for a designer to describe or program explicitly. We propose to teach such behaviors to a robot with a learning-by-demonstration approach, using recorded human-human interaction data to identify both the behaviors the robot should perform and the social cues it should respond to. In this study, we present a fully unsupervised approach that uses abstraction and clustering to identify behavior elements and joint interaction states, which are used in a variable-length Markov model predictor to generate socially-appropriate behavior commands for a robot. The proposed technique provides encouraging results despite high amounts of sensor noise, especially in speech recognition. We demonstrate our system with a robot in a shopping scenario.","PeriodicalId":235810,"journal":{"name":"The 23rd IEEE International Symposium on Robot and Human Interactive Communication","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd IEEE International Symposium on Robot and Human Interactive Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2014.6926377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Developing interactive behaviors for social robots presents a number of challenges. It is difficult to interpret the meaning of the details of people's behavior, particularly non-verbal behavior like body positioning, but yet a social robot needs to be contingent to such subtle behaviors. It needs to generate utterances and non-verbal behavior with good timing and coordination. The rules for such behavior are often based on implicit knowledge and thus difficult for a designer to describe or program explicitly. We propose to teach such behaviors to a robot with a learning-by-demonstration approach, using recorded human-human interaction data to identify both the behaviors the robot should perform and the social cues it should respond to. In this study, we present a fully unsupervised approach that uses abstraction and clustering to identify behavior elements and joint interaction states, which are used in a variable-length Markov model predictor to generate socially-appropriate behavior commands for a robot. The proposed technique provides encouraging results despite high amounts of sensor noise, especially in speech recognition. We demonstrate our system with a robot in a shopping scenario.