Optimized light trapping in thin film silicon solar cells by metal nanoparticle

Zihuan Xia, Yonggang Wu, Yingzhuang Ma, Leijie Ling, G. Lv, Heyun Wu
{"title":"Optimized light trapping in thin film silicon solar cells by metal nanoparticle","authors":"Zihuan Xia, Yonggang Wu, Yingzhuang Ma, Leijie Ling, G. Lv, Heyun Wu","doi":"10.1117/12.887555","DOIUrl":null,"url":null,"abstract":"Detailed design for nanoparticle plasmons-enhanced solar cells is presented in this article. Optimal structure for the max enhancement from the nanoparticle arrays is investigated by varying the size, shape and period of the nanoparticle, and thickness of Si absorber. Tolerance of the nanoparticle arrays provides guidance for fabrication in practice. Contribution of front and back structure as well as the nanoparticle arrays to the photocurrent is analyzed respectively. After optimization short circuit current density attains 20mA/cm2 with a 185% enhancement compared to that of the 700nm thick Si.","PeriodicalId":316559,"journal":{"name":"International Conference on Thin Film Physics and Applications","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Thin Film Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.887555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detailed design for nanoparticle plasmons-enhanced solar cells is presented in this article. Optimal structure for the max enhancement from the nanoparticle arrays is investigated by varying the size, shape and period of the nanoparticle, and thickness of Si absorber. Tolerance of the nanoparticle arrays provides guidance for fabrication in practice. Contribution of front and back structure as well as the nanoparticle arrays to the photocurrent is analyzed respectively. After optimization short circuit current density attains 20mA/cm2 with a 185% enhancement compared to that of the 700nm thick Si.
利用金属纳米粒子优化薄膜硅太阳能电池的光捕获
本文介绍了纳米粒子等离子体增强太阳能电池的详细设计。通过改变纳米颗粒的尺寸、形状和周期以及硅吸收剂的厚度,研究了纳米颗粒阵列最大增强的最佳结构。纳米颗粒阵列的公差为实际制造提供了指导。分别分析了前后结构和纳米粒子阵列对光电流的贡献。优化后的短路电流密度达到20mA/cm2,与700nm厚Si相比提高了185%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信