Empirical modeling methods using partial data

G. Stenbakken, Hung-kung Liu, G. Hwang
{"title":"Empirical modeling methods using partial data","authors":"G. Stenbakken, Hung-kung Liu, G. Hwang","doi":"10.1109/IMTC.2002.1007068","DOIUrl":null,"url":null,"abstract":"Methods were developed to calculate empirical models for device error behavior from data sets with missing data. These models can be used to develop reduced point testing procedures for the devices. The partial data methods reduce the prediction uncertainty for test points that have more modeling data available relative to the prediction uncertainty of partial data test points. Simulations show that the prediction uncertainty for full data test points are comparable to the case where the \"missing\" data are \"known.\" When these methods are applied to real data where the underlying model has changed the improvements are less than the simulations predict.","PeriodicalId":141111,"journal":{"name":"IMTC/2002. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.00CH37276)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMTC/2002. Proceedings of the 19th IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.00CH37276)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.2002.1007068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Methods were developed to calculate empirical models for device error behavior from data sets with missing data. These models can be used to develop reduced point testing procedures for the devices. The partial data methods reduce the prediction uncertainty for test points that have more modeling data available relative to the prediction uncertainty of partial data test points. Simulations show that the prediction uncertainty for full data test points are comparable to the case where the "missing" data are "known." When these methods are applied to real data where the underlying model has changed the improvements are less than the simulations predict.
采用部分数据的经验建模方法
开发了从缺失数据集计算设备错误行为的经验模型的方法。这些模型可用于开发设备的简化点测试程序。相对于部分数据测试点的预测不确定性,部分数据方法降低了可用建模数据较多的测试点的预测不确定性。模拟表明,完整数据测试点的预测不确定性与“缺失”数据“已知”的情况相当。当这些方法应用于底层模型发生变化的实际数据时,其改进程度低于模拟预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信