Comparative analysis of modern time-series analysis methods

Alexey V. Dergunov, Y. V. Kuts, Leonid N. Shcerbak
{"title":"Comparative analysis of modern time-series analysis methods","authors":"Alexey V. Dergunov, Y. V. Kuts, Leonid N. Shcerbak","doi":"10.1109/MRRS.2011.6053679","DOIUrl":null,"url":null,"abstract":"The purpose of this article is the analysis of a priori uncertainty elimination methods in a poorly studied processing experimental results interpretation under conditions of limited a priori knowledge about research process models. Two modern adaptive methods that can be used at experimental data preprocessing stage: empirical mode decomposition and singular spectral analysis (caterpillar) are presented. Comparative analysis of these two methods by power consumption analysis example is performed.","PeriodicalId":424165,"journal":{"name":"2011 MICROWAVES, RADAR AND REMOTE SENSING SYMPOSIUM","volume":"668 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 MICROWAVES, RADAR AND REMOTE SENSING SYMPOSIUM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MRRS.2011.6053679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The purpose of this article is the analysis of a priori uncertainty elimination methods in a poorly studied processing experimental results interpretation under conditions of limited a priori knowledge about research process models. Two modern adaptive methods that can be used at experimental data preprocessing stage: empirical mode decomposition and singular spectral analysis (caterpillar) are presented. Comparative analysis of these two methods by power consumption analysis example is performed.
现代时间序列分析方法的比较分析
本文的目的是分析在研究过程模型的先验知识有限的情况下,先验不确定性消除方法在处理实验结果解释方面的研究不足。提出了两种可用于实验数据预处理阶段的现代自适应方法:经验模态分解和奇异谱分析。通过功耗分析实例对两种方法进行了对比分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信