{"title":"Materials and Integration Strategies for Modern RF Integrated Circuits","authors":"D. Green, C. L. Dohrman, A. Kane, Tsu-Hsi Chang","doi":"10.1109/CSICS.2014.6978567","DOIUrl":null,"url":null,"abstract":"The DARPA Microsystems Technology Office is developing revolutionary materials, devices, and integration techniques for meeting the RF integrated circuit performance requirements for advanced modern RF systems. DARPA is enabling these systems through systematic development of materials and devices, circuits, and integration technologies for compound semiconductors. The DARPA Nitride Electronic Next-Generation Technology (NEXT) program is developing high performance nitride transistors for high-speed RF, analog and mixed signal electronics, thus overcoming the Johnson figure of merit limits to achieving simultaneous high-speed operation and high breakdown voltage. The DARPA Microscale Power Conversion (MPC) program is developing nitride-based technology to enable dynamic envelope-tracking power conversion embedded in RF radiating elements. The DARPA Diverse Accessible Heterogeneous Integration (DAHI) program is developing transistor-scale heterogeneous integration processes to intimately combine advanced compound semiconductor (CS) devices, as well as other emerging materials and devices, with high-density silicon CMOS technology. Taken together, these programs are addressing many of the critical challenges for next-generation RF modules and seek to revolutionize DoD capabilities in this area.","PeriodicalId":309722,"journal":{"name":"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2014.6978567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The DARPA Microsystems Technology Office is developing revolutionary materials, devices, and integration techniques for meeting the RF integrated circuit performance requirements for advanced modern RF systems. DARPA is enabling these systems through systematic development of materials and devices, circuits, and integration technologies for compound semiconductors. The DARPA Nitride Electronic Next-Generation Technology (NEXT) program is developing high performance nitride transistors for high-speed RF, analog and mixed signal electronics, thus overcoming the Johnson figure of merit limits to achieving simultaneous high-speed operation and high breakdown voltage. The DARPA Microscale Power Conversion (MPC) program is developing nitride-based technology to enable dynamic envelope-tracking power conversion embedded in RF radiating elements. The DARPA Diverse Accessible Heterogeneous Integration (DAHI) program is developing transistor-scale heterogeneous integration processes to intimately combine advanced compound semiconductor (CS) devices, as well as other emerging materials and devices, with high-density silicon CMOS technology. Taken together, these programs are addressing many of the critical challenges for next-generation RF modules and seek to revolutionize DoD capabilities in this area.