Regression Approach to Lossles Compression Algorithm for Hyperspectral Images

Assiya Sarinova, A. Neftissov, S. Bronin
{"title":"Regression Approach to Lossles Compression Algorithm for Hyperspectral Images","authors":"Assiya Sarinova, A. Neftissov, S. Bronin","doi":"10.1109/SIST54437.2022.9945817","DOIUrl":null,"url":null,"abstract":"At present, there is a significant increase in interest in solving applied problems using hyperspectral aerospace images obtained from satellites of spacecraft for remote sensing of the Earth. Hyperspectral images show significant spectral correlation, the use of which is critical for compression. In this paper, we propose an efficient approach to hyperspectral image compression using a lossless regression algorithm. The main idea of the proposed transformation is an algorithm with finding pairs of correlated channels and then creating lossless transformed blocks using regression analysis, which makes it possible to reduce the size of the aerospace image channels and transform them before compression.","PeriodicalId":207613,"journal":{"name":"2022 International Conference on Smart Information Systems and Technologies (SIST)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST54437.2022.9945817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

At present, there is a significant increase in interest in solving applied problems using hyperspectral aerospace images obtained from satellites of spacecraft for remote sensing of the Earth. Hyperspectral images show significant spectral correlation, the use of which is critical for compression. In this paper, we propose an efficient approach to hyperspectral image compression using a lossless regression algorithm. The main idea of the proposed transformation is an algorithm with finding pairs of correlated channels and then creating lossless transformed blocks using regression analysis, which makes it possible to reduce the size of the aerospace image channels and transform them before compression.
高光谱图像损失压缩算法的回归方法
目前,利用航天器卫星获得的高光谱航空航天图像来解决地球遥感应用问题的兴趣显著增加。高光谱图像显示出显著的光谱相关性,其使用对压缩至关重要。在本文中,我们提出了一种使用无损回归算法的高效方法来压缩高光谱图像。该算法的主要思想是找到相关信道对,然后利用回归分析创建无损变换块,从而减小航空图像信道的大小并在压缩前对其进行变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信