T. Kumada, K. Akutsu, K. Ohishi, Y. Kawamura, T. Morikawa, M. Sahara, J. Suzuki, N. Torikai
{"title":"Development of closed -cycle dynamic nuclear polarization system for small -angle neutron scattering and neutron reflectometry","authors":"T. Kumada, K. Akutsu, K. Ohishi, Y. Kawamura, T. Morikawa, M. Sahara, J. Suzuki, N. Torikai","doi":"10.22323/1.324.0009","DOIUrl":null,"url":null,"abstract":"We develop a closed-cycle dynamic nuclear polarization (DNP) system for spin-contrast-variation (SCV) small-angle neutron scattering (SANS) and neutron reflectometry (NR) to increase the use of these techniques. Compared with our cryogen-filled DNP system, the closed-cycle system is made compact and can change the sample in a comparable time-scale, but achieved proton-polarization is only 11.2 and 20$\\pm$3% for bulk and thin-film samples, respectively, whereas 32-37% is achieved with the cryogen-filled system. This is because cooling power of the recycling cold helium gas in the closed-cycle system is lower than that of superfluid helium in the cryogen-filled one. In order to improve the polarization with the closed-cycle system, we have to improve thermal contact between the sample and cold helium gas to minimize microwave heating of the sample.","PeriodicalId":166894,"journal":{"name":"Proceedings of XVII International Workshop on Polarized Sources, Targets & Polarimetry — PoS(PSTP2017)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XVII International Workshop on Polarized Sources, Targets & Polarimetry — PoS(PSTP2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.324.0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a closed-cycle dynamic nuclear polarization (DNP) system for spin-contrast-variation (SCV) small-angle neutron scattering (SANS) and neutron reflectometry (NR) to increase the use of these techniques. Compared with our cryogen-filled DNP system, the closed-cycle system is made compact and can change the sample in a comparable time-scale, but achieved proton-polarization is only 11.2 and 20$\pm$3% for bulk and thin-film samples, respectively, whereas 32-37% is achieved with the cryogen-filled system. This is because cooling power of the recycling cold helium gas in the closed-cycle system is lower than that of superfluid helium in the cryogen-filled one. In order to improve the polarization with the closed-cycle system, we have to improve thermal contact between the sample and cold helium gas to minimize microwave heating of the sample.